2,945 research outputs found

    Self-adjustable domain adaptation in personalized ECG monitoring integrated with IR-UWB radar

    Get PDF
    To enhance electrocardiogram (ECG) monitoring systems in personalized detections, deep neural networks (DNNs) are applied to overcome individual differences by periodical retraining. As introduced previously [4], DNNs relieve individual differences by fusing ECG with impulse radio ultra-wide band (IR-UWB) radar. However, such DNN-based ECG monitoring system tends to overfit into personal small datasets and is difficult to generalize to newly collected unlabeled data. This paper proposes a self-adjustable domain adaptation (SADA) strategy to prevent from overfitting and exploit unlabeled data. Firstly, this paper enlarges the database of ECG and radar data with actual records acquired from 28 testers and expanded by the data augmentation. Secondly, to utilize unlabeled data, SADA combines self organizing maps with the transfer learning in predicting labels. Thirdly, SADA integrates the one-class classification with domain adaptation algorithms to reduce overfitting. Based on our enlarged database and standard databases, a large dataset of 73200 records and a small one of 1849 records are built up to verify our proposal. Results show SADA\u27s effectiveness in predicting labels and increments in the sensitivity of DNNs by 14.4% compared with existing domain adaptation algorithms

    A review of automated sleep disorder detection

    Get PDF
    Automated sleep disorder detection is challenging because physiological symptoms can vary widely. These variations make it difficult to create effective sleep disorder detection models which support hu-man experts during diagnosis and treatment monitoring. From 2010 to 2021, authors of 95 scientific papers have taken up the challenge of automating sleep disorder detection. This paper provides an expert review of this work. We investigated whether digital technology and Artificial Intelligence (AI) can provide automated diagnosis support for sleep disorders. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines during the content discovery phase. We compared the performance of proposed sleep disorder detection methods, involving differ-ent datasets or signals. During the review, we found eight sleep disorders, of which sleep apnea and insomnia were the most studied. These disorders can be diagnosed using several kinds of biomedical signals, such as Electrocardiogram (ECG), Polysomnography (PSG), Electroencephalogram (EEG), Electromyogram (EMG), and snore sound. Subsequently, we established areas of commonality and distinctiveness. Common to all reviewed papers was that AI models were trained and tested with labelled physiological signals. Looking deeper, we discovered that 24 distinct algorithms were used for the detection task. The nature of these algorithms evolved, before 2017 only traditional Machine Learning (ML) was used. From 2018 onward, both ML and Deep Learning (DL) methods were used for sleep disorder detection. The strong emergence of DL algorithms has considerable implications for future detection systems because these algorithms demand significantly more data for training and testing when compared with ML. Based on our review results, we suggest that both type and amount of labelled data is crucial for the design of future sleep disorder detection systems because this will steer the choice of AI algorithm which establishes the desired decision support. As a guiding principle, more labelled data will help to represent the variations in symptoms. DL algorithms can extract information from these larger data quantities more effectively, therefore; we predict that the role of these algorithms will continue to expand

    A 2D convolutional neural network to detect sleep apnea in children using airflow and oximetry

    Get PDF
    Producción CientíficaThe gold standard approach to diagnose obstructive sleep apnea (OSA) in children is overnight in-lab polysomnography (PSG), which is labor-intensive for clinicians and onerous to healthcare systems and families. Simplification of PSG should enhance availability and comfort, and reduce complexity and waitlists. Airflow (AF) and oximetry (SpO2) signals summarize most of the information needed to detect apneas and hypopneas, but automatic analysis of these signals using deep-learning algorithms has not been extensively investigated in the pediatric context. The aim of this study was to evaluate a convolutional neural network (CNN) architecture based on these two signals to estimate the severity of pediatric OSA. PSG-derived AF and SpO2 signals from the Childhood Adenotonsillectomy Trial (CHAT) database (1638 recordings), as well as from a clinical database (974 recordings), were analyzed. A 2D CNN fed with AF and SpO2 signals was implemented to estimate the number of apneic events, and the total apnea-hypopnea index (AHI) was estimated. A training-validation-test strategy was used to train the CNN, adjust the hyperparameters, and assess the diagnostic ability of the algorithm, respectively. Classification into four OSA severity levels (no OSA, mild, moderate, or severe) reached 4-class accuracy and Cohen's Kappa of 72.55% and 0.6011 in the CHAT test set, and 61.79% and 0.4469 in the clinical dataset, respectively. Binary classification accuracy using AHI cutoffs 1, 5 and 10 events/h ranged between 84.64% and 94.44% in CHAT, and 84.10%–90.26% in the clinical database. The proposed CNN-based architecture achieved high diagnostic ability in two independent databases, outperforming previous approaches that employed SpO2 signals alone, or other classical feature-engineering approaches. Therefore, analysis of AF and SpO2 signals using deep learning can be useful to deploy reliable computer-aided diagnostic tools for childhood OSA.Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (project 10.13039/501100011033)Fondo Europeo de Desarrollo Regional - Unión Europea (projects PID2020-115468RB-I00 and PDC2021-120775-I00)Sociedad Española de Neumología y Cirugía Torácica (project 649/2018)Sociedad Española de Sueño (project Beca de Investigación SES 2019)Consorcio Centro de Investigación Biomédica en Red - Instituto de Salud Carlos III - Ministerio de Ciencia, Innovación y Universidades (project CB19/01/00012)National Institutes of Health (projects HL083075, HL083129, UL1-RR-024134 and UL1 RR024989)National Heart, Lung, and Blood Institute (projects R24 HL114473 and 75N92019R002)Ministerio de Educación, Cultura y Deporte (grant FPU16/02938)Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación - Fondo Social Europeo (grant RYC2019-028566-I)National Institutes of Health (grants HL130984, HL140548, and AG061824

    An explainable deep-learning architecture for pediatric sleep apnea identification from overnight airflow and oximetry signals

    Get PDF
    Producción CientíficaDeep-learning algorithms have been proposed to analyze overnight airflow (AF) and oximetry (SpO2) signals to simplify the diagnosis of pediatric obstructive sleep apnea (OSA), but current algorithms are hardly interpretable. Explainable artificial intelligence (XAI) algorithms can clarify the models-derived predictions on these signals, enhancing their diagnostic trustworthiness. Here, we assess an explainable architecture that combines convolutional and recurrent neural networks (CNN + RNN) to detect pediatric OSA and its severity. AF and SpO2 were obtained from the Childhood Adenotonsillectomy Trial (CHAT) public database (n = 1,638) and a proprietary database (n = 974). These signals were arranged in 30-min segments and processed by the CNN + RNN architecture to derive the number of apneic events per segment. The apnea-hypopnea index (AHI) was computed from the CNN + RNN-derived estimates and grouped into four OSA severity levels. The Gradient-weighted Class Activation Mapping (Grad-CAM) XAI algorithm was used to identify and interpret novel OSA-related patterns of interest. The AHI regression reached very high agreement (intraclass correlation coefficient > 0.9), while OSA severity classification achieved 4-class accuracies 74.51% and 62.31%, and 4-class Cohen’s Kappa 0.6231 and 0.4495, in CHAT and the private datasets, respectively. All diagnostic accuracies on increasing AHI cutoffs (1, 5 and 10 events/h) surpassed 84%. The Grad-CAM heatmaps revealed that the model focuses on sudden AF cessations and SpO2 drops to detect apneas and hypopneas with desaturations, and often discards patterns of hypopneas linked to arousals. Therefore, an interpretable CNN + RNN model to analyze AF and SpO2 can be helpful as a diagnostic alternative in symptomatic children at risk of OSA.Ministerio de Ciencia e Innovación /AEI/10.13039/501100011033/ FEDER (grants PID2020-115468RB-I00 and PDC2021-120775-I00)CIBER -Consorcio Centro de Investigación Biomédica en Red- (CB19/01/00012), Instituto de Salud Carlos IIINational Institutes of Health (HL083075, HL083129, UL1-RR-024134, UL1 RR024989)National Heart, Lung, and Blood Institute (R24 HL114473, 75N92019R002)Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación- “Ramón y Cajal” grant (RYC2019-028566-I

    Usefulness of Artificial Neural Networks in the Diagnosis and Treatment of Sleep Apnea-Hypopnea Syndrome

    Get PDF
    Sleep apnea-hypopnea syndrome (SAHS) is a chronic and highly prevalent disease considered a major health problem in industrialized countries. The gold standard diagnostic methodology is in-laboratory nocturnal polysomnography (PSG), which is complex, costly, and time consuming. In order to overcome these limitations, novel and simplified diagnostic alternatives are demanded. Sleep scientists carried out an exhaustive research during the last decades focused on the design of automated expert systems derived from artificial intelligence able to help sleep specialists in their daily practice. Among automated pattern recognition techniques, artificial neural networks (ANNs) have demonstrated to be efficient and accurate algorithms in order to implement computer-aided diagnosis systems aimed at assisting physicians in the management of SAHS. In this regard, several applications of ANNs have been developed, such as classification of patients suspected of suffering from SAHS, apnea-hypopnea index (AHI) prediction, detection and quantification of respiratory events, apneic events classification, automated sleep staging and arousal detection, alertness monitoring systems, and airflow pressure optimization in positive airway pressure (PAP) devices to fit patients’ needs. In the present research, current applications of ANNs in the framework of SAHS management are thoroughly reviewed
    corecore