179 research outputs found

    Constant Envelope DCT- and FFT- based Multicarrier Systems

    Get PDF
    Discrete Cosine Transform (DCT)- and Fast Fourier Transform (FFT)- based Orthogonal Frequency Division Multiplexing (OFDM) systems with a variety of angle modulations are considered for data transmission. These modulations are used with the purpose of achieving Constant Envelope (CE) transmitted signals, for superior power efficiency with nonlinear High Power Amplifier (HPA), typically used at the transmitter in OFDM systems. Specifically, four angle modulations are considered: i) Phase Modulation (PM); ii) Frequency Modulation (FM); iii) Continuous Phase Modulation (CPM); and iv) Continuous Phase Chirp Modulation (CPCM). Descriptions of DCT- and FFT- based OFDM systems with M-ary Pulse Amplitude Modulation (MPAM) mapper, with these modulations, are given and expressions for transmitted signals are developed. The detection of these signals in Additive White Gaussian Noise (AWGN) and multipath fading channels is addressed. The receiver structure consists of arctangent demodulator followed by the optimum OFDM receiver for memoryless PM and FM modulations. However, for CPM and CPCM modulations that have inherent memory, arctangent demodulator followed by correction with oversampling technique is used prior to the optimum OFDM receiver. Closed-form expressions for Bit Error Rate (BER) have been derived and are function of: i) Signal-to-Noise Ratio, (Eb/N0); ii) Modulation parameters; iii) Number of amplitude levels of M-PAM mapper; and iv) parameters of multipath fading environment. It is shown that, in general, BER performance of CE-DCT-OFDM system is superior compared to that of conventional DCT-OFDM system, when the effect of HPA in the system is taken into account. Also, it is observed that CE-DCT-OFDM system outperforms CE-FFT-OFDM system by nearly 3 dB. The DCT- and FFT- OFDM systems with CPM and CPCM modulations are superior in BER performance compared to PM and FM modulations in these systems. The use of CPCM in OFDM systems can provide attractive trade off between bandwidth and BER performance. The performance of CE-DCT-OFDM and CE-FFT-OFDM systems over Rayleigh and Rician frequency non-selective slowly-varying fading channels are illustrated as a function of channel parameters and the penalty in SNR that must be paid as consequence of the fading is determined

    CPM-SC-IFDMA--A Power Efficient Transmission Scheme for Uplink LTE

    Get PDF
    In this thesis we have proposed a power efficient transmission scheme, CPM-SC-IFDMA, for uplink LTE. In uplink LTE, efficiency of the transmitter power amplier is a major concern, as the transmitter is placed in the mobile device which has limited power supply. The proposed scheme, CPM-SC-IFDMA, combines the key advantages of CPM (continuous phase modulation) with SC-IFDMA (single carrier frequency division multiple access with interleaved subcarrier mapping) in order to increase the power amplier efficiency of the transmitter. In this work, we have analyzed the bit error rate (BER) performance of the proposed scheme in LTE specied channels. The BER performance of two CPM-SC-IFDMA scheme are compared with that of a LTE specied transmission scheme, QPSK-LFDMA (QPSK modulated SC-FDMA with localized subcarrier mapping), combined with convolutional coding (CC-QPSK-LFDMA). We first show that CPM-SC-IFDMA has a much higher power efficiency than CC-QPSK-LFDMA by simulating the PAPR (peak-to-average-power-ratio) plots. Then, using the data from the PAPR plots and the conventional BER plots (BER as a function of signal-to-noise-ratio), we show that, when the net BER, obtained by compensating for the power efficiency loss, is considered, CPM-SC-IFDMA has a superior performance relative to CC-QPSK-LFDMA by up to 3.8 dB, in the LTE specified channels

    Joint Detection and Decoding of High-Order Modulation Schemes for CDMA and OFDM Wireless Communications

    Get PDF
    Wireless communications call for high data rate, power and bandwidth efficient transmissions. High-order modulation schemes are suitable candidates for this purpose as the potential to reduce the symbol period is often limited by the multipath-induced intersymbol interference. In order to reduce the power consumption, and at the same time, to estimate time-variant wireless channels, we propose low-complexity, joint detection and decoding schemes for high-order modulation signals in this dissertation. We start with the iterative demodulation and decoding of high-order CPM signals for mobile communications. A low complexity, pilot symbol-assisted coherent modulation scheme is proposed that can significantly improve the bit error rate performance by efficiently exploiting the inherent memory structure of the CPM modulation. A noncoherent scheme based on multiple symbol differential detection is also proposed and the performances of the two schemes are simulated and compared. Second, two iterative demodulation and decoding schemes are proposed for quadrature amplitude modulated signals in flat fading channels. Both of them make use of the iterative channel estimation based on the data signal reconstructed from decoder output. The difference is that one of them has a threshold controller that only allows the data reconstructed with high reliability values to be used for iterative channel estimation, while the other one directly uses all reconstructed data. As the second scheme has much lower complexity with a performance similar to the best of the first one, we further apply it to the space-time coded CDMA Rake receiver in frequency-selective multipath channels. We will compare it to the pilot-aided demodulation scheme that uses a dedicated pilot signal for channel estimation. In the third part of the dissertation, we design anti-jamming multicarrier communication systems. Two types of jamming signals are considered - the partial-band tone jamming and the partial-time pulse jamming. We propose various iterative schemes to detect, estimate, and cancel the jamming signal in both AWGN and fading channels. Simulation results demonstrate that the proposed systems can provide reliable communications over a wide range of jamming-to-signal power ratios. Last, we study the problem of maximizing the throughput of a cellular multicarrier communication network with transmit or receive diversity. The total throughput of the network is maximized subject to power constraints on each mobile. We first extend the distributed water-pouring power control algorithm from single transmit and receive antenna to multiple transmit and receive antennas. Both equal power diversity and selective diversity are considered. We also propose a centralized power control algorithm based on the active set strategy and the gradient projection method. The performances of the two algorithms are assessed with simulation and compared with the equal power allocation algorithm

    Towards low-cost gigabit wireless systems at 60 GHz

    Get PDF
    The world-wide availability of the huge amount of license-free spectral space in the 60 GHz band provides wide room for gigabit-per-second (Gb/s) wireless applications. A commercial (read: low-cost) 60-GHz transceiver will, however, provide limited system performance due to the stringent link budget and the substantial RF imperfections. The work presented in this thesis is intended to support the design of low-cost 60-GHz transceivers for Gb/s transmission over short distances (a few meters). Typical applications are the transfer of high-definition streaming video and high-speed download. The presented work comprises research into the characteristics of typical 60-GHz channels, the evaluation of the transmission quality as well as the development of suitable baseband algorithms. This can be summarized as follows. In the first part, the characteristics of the wave propagation at 60 GHz are charted out by means of channel measurements and ray-tracing simulations for both narrow-beam and omni-directional configurations. Both line-of-sight (LOS) and non-line-of-sight (NLOS) are considered. This study reveals that antennas that produce a narrow beam can be used to boost the received power by tens of dBs when compared with omnidirectional configurations. Meanwhile, the time-domain dispersion of the channel is reduced to the order of nanoseconds, which facilitates Gb/s data transmission over 60-GHz channels considerably. Besides the execution of measurements and simulations, the influence of antenna radiation patterns is analyzed theoretically. It is indicated to what extent the signal-to-noise ratio, Rician-K factor and channel dispersion are improved by application of narrow-beam antennas and to what extent these parameters will be influenced by beam pointing errors. From both experimental and analytical work it can be concluded that the problem of the stringent link-budget can be solved effectively by application of beam-steering techniques. The second part treats wideband transmission methods and relevant baseband algorithms. The considered schemes include orthogonal frequency division multiplexing (OFDM), multi-carrier code division multiple access (MC-CDMA) and single carrier with frequency-domain equalization (SC-FDE), which are promising candidates for Gb/s wireless transmission. In particular, the optimal linear equalization in the frei quency domain and associated implementation issues such as synchronization and channel estimation are examined. Bit error rate (BER) expressions are derived to evaluate the transmission performance. Besides the linear equalization techniques, a low-complexity inter-symbol interference cancellation technique is proposed to achieve much better performance of code-spreading systems such as MC-CDMA and SC-FDE. Both theoretical analysis and simulations demonstrate that the proposed scheme offers great advantages as regards both complexity and performance. This makes it particularly suitable for 60-GHz applications in multipath environments. The third part treats the influence of quantization and RF imperfections on the considered transmission methods in the context of 60-GHz radios. First, expressions for the BER are derived and the influence of nonlinear distortions caused by the digital-to-analog converters, analog-to-digital converters and power amplifiers on the BER performance is examined. Next, the BER performance under the influence of phase noise and IQ imbalance is evaluated for the case that digital compensation techniques are applied in the receiver as well as for the case that such techniques are not applied. Finally, a baseline design of a low-cost Gb/s 60-GHz transceiver is presented. It is shown that, by application of beam-steering in combination with SC-FDE without advanced channel coding, a data rate in the order of 2 Gb/s can be achieved over a distance of 10 meters in a typical NLOS indoor scenario

    連続位相変調方式の広帯域無線システムへの適用に関する研究

    Get PDF
    信州大学(Shinshu university)博士(工学)Thesis森岡 和行. 連続位相変調方式の広帯域無線システムへの適用に関する研究. 信州大学, 2014, 博士論文. 博士(工学), 甲第614号, 平成26年9月30日授与.doctoral thesi
    corecore