20,176 research outputs found

    Carcinoembryonic Antigen Gene Family

    Get PDF
    The carcinoembryonic antigen (CEA) gene family belongs to the immunoglobulin supergene family and can be divided into two main subgroups based on sequence comparisons. In humans it is clustered on the long arm of chromosome 19 and consists of approximately 20 genes. The CEA subgroup genes code for CEA and its classical crossreacting antigens, which are mainly membrane-bound, whereas the other subgroup genes encode the pregnancy-specific glycoproteins (PSG), which are secreted. Splice variants of individual genes and differential post-translational modifications of the resulting proteins, e.g., by glycosylation, indicate a high complexity in the number of putative CEA-related molecules. So far, only a limited number of CEA-related antigens in humans have been unequivocally assigned to a specific gene. Rodent CEA-related genes reveal a high sequence divergence and, in part, a completely different domain organization than the human CEA gene family, making it difficult to determine individual gene counterparts. However, rodent CEA-related genes can be assigned to human subgroups based on similarity of expression patterns, which is characteristic for the subgroups. Various functions have been determined for members of the CEA subgroup in vitro, including cell adhesion, bacterial binding, an accessory role for collagen binding or ecto-ATPases activity. Based on all that is known so far on its biology, the clinical outlook for the CEA family has been reassessed

    Evolutionarily conserved and diverged alternative splicing events show different expression and functional profiles

    Get PDF
    To better decipher the functional impact of alternative splicing, we classified alternative splicing events in 10 818 pairs of human and mouse genes based on conservation at genome and transcript levels. Expression levels of conserved alternative splices in human and mouse expressed sequence tag databases show strong correlation, indicating that alternative splicing is similarly regulated in both species. A total of 43% (8921) of mouse alternative splices could be found in the human genome but not in human transcripts. Five of eleven tested mouse predictions were observed in human tissues, demonstrating that mouse transcripts provide a valuable resource for identifying alternative splicing events in human genes. Combining gene-specific measures of conserved and diverged alternative splicing with both gene classification based on Gene Ontology (GO) and microarray-determined gene expression in 52 diverse human tissues and cell lines, we found conserved alternative splicing most enriched in brain-expressed signaling pathways. Diverged alternative splicing is more prevalent in testis and cancerous cell line up-regulated processes, including protein biosynthesis, responses to stress and responses to endogenous stimuli. Using conservation as a surrogate for functional significance, these results suggest that alternative splicing plays an important role in enhancing the functional capacity of central nervous systems, while non-functional splicing more frequently occurs in testis and cell lines, possibly as a result of cellular stress and rapid proliferation

    N-terminal proteomics assisted profiling of the unexplored translation initiation landscape in Arabidopsis thaliana

    Get PDF
    Proteogenomics is an emerging research field yet lacking a uniform method of analysis. Proteogenomic studies in which N-terminal proteomics and ribosome profiling are combined, suggest that a high number of protein start sites are currently missing in genome annotations. We constructed a proteogenomic pipeline specific for the analysis of N-terminal proteomics data, with the aim of discovering novel translational start sites outside annotated protein coding regions. In summary, unidentified MS/MS spectra were matched to a specific N-terminal peptide library encompassing protein N termini encoded in the Arabidopsis thaliana genome. After a stringent false discovery rate filtering, 117 protein N termini compliant with N-terminal methionine excision specificity and indicative of translation initiation were found. These include N-terminal protein extensions and translation from transposable elements and pseudogenes. Gene prediction provided supporting protein-coding models for approximately half of the protein N termini. Besides the prediction of functional domains (partially) contained within the newly predicted ORFs, further supporting evidence of translation was found in the recently released Araport11 genome re-annotation of Arabidopsis and computational translations of sequences stored in public repositories. Most interestingly, complementary evidence by ribosome profiling was found for 23 protein N termini. Finally, by analyzing protein N-terminal peptides, an in silico analysis demonstrates the applicability of our N-terminal proteogenomics strategy in revealing protein-coding potential in species with well-and poorly-annotated genomes

    A comprehensive transcript index of the human genome generated using microarrays and computational approaches

    Get PDF
    BACKGROUND: Computational and microarray-based experimental approaches were used to generate a comprehensive transcript index for the human genome. Oligonucleotide probes designed from approximately 50,000 known and predicted transcript sequences from the human genome were used to survey transcription from a diverse set of 60 tissues and cell lines using ink-jet microarrays. Further, expression activity over at least six conditions was more generally assessed using genomic tiling arrays consisting of probes tiled through a repeat-masked version of the genomic sequence making up chromosomes 20 and 22. RESULTS: The combination of microarray data with extensive genome annotations resulted in a set of 28,456 experimentally supported transcripts. This set of high-confidence transcripts represents the first experimentally driven annotation of the human genome. In addition, the results from genomic tiling suggest that a large amount of transcription exists outside of annotated regions of the genome and serves as an example of how this activity could be measured on a genome-wide scale. CONCLUSIONS: These data represent one of the most comprehensive assessments of transcriptional activity in the human genome and provide an atlas of human gene expression over a unique set of gene predictions. Before the annotation of the human genome is considered complete, however, the previously unannotated transcriptional activity throughout the genome must be fully characterized

    Identification and characterization of an inhibitory fibroblast growth factor receptor 2 (FGFR2) molecule, up-regulated in an Apert Syndrome mouse model

    Get PDF
    AS (Apert syndrome) is a congenital disease composed of skeletal, visceral and neural abnormalities, caused by dominant-acting mutations in FGFR2 [FGF (fibroblast growth factor) receptor 2]. Multiple FGFR2 splice variants are generated through alternative splicing, including PTC (premature termination codon)-containing transcripts that are normally eliminated via the NMD (nonsense-mediated decay) pathway. We have discovered that a soluble truncated FGFR2 molecule encoded by a PTC-containing transcript is up-regulated and persists in tissues of an AS mouse model. We have termed this IIIa–TM as it arises from aberrant splicing of FGFR2 exon 7 (IIIa) into exon 10 [TM (transmembrane domain)]. IIIa–TM is glycosylated and can modulate the binding of FGF1 to FGFR2 molecules in BIAcore-binding assays. We also show that IIIa–TM can negatively regulate FGF signalling in vitro and in vivo. AS phenotypes are thought to result from gain-of-FGFR2 signalling, but our findings suggest that IIIa–TM can contribute to these through a loss-of-FGFR2 function mechanism. Moreover, our findings raise the interesting possibility that FGFR2 signalling may be a regulator of the NMD pathway

    A study of alternative splicing in the pig

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since at least half of the genes in mammalian genomes are subjected to alternative splicing, alternative pre-mRNA splicing plays an important contribution to the complexity of the mammalian proteome. Expressed sequence tags (ESTs) provide evidence of a great number of possible alternative isoforms. With the EST resource for the domestic pig now containing more than one million porcine ESTs, it is possible to identify alternative splice forms of the individual transcripts in this species from the EST data with some confidence.</p> <p>Results</p> <p>The pig EST data generated by the Sino-Danish Pig Genome project has been assembled with publicly available ESTs and made available in the PigEST database. Using the Distiller package 2,515 EST clusters with candidate alternative isoforms were identified in the EST data with high confidence. In agreement with general observations in human and mouse, we find putative splice variants in about 30% of the contigs with more than 50 ESTs. Based on the criteria that a minimum of two EST sequences confirmed each splice event, a list of 100 genes with the most distinct tissue-specific alternative splice events was generated from the list of candidates. To confirm the tissue specificity of the splice events, 10 genes with functional annotation were randomly selected from which 16 individual splice events were chosen for experimental verification by quantitative PCR (qPCR). Six genes were shown to have tissue specific alternatively spliced transcripts with expression patterns matching those of the EST data. The remaining four genes had tissue-restricted expression of alternative spliced transcripts. Five out of the 16 splice events that were experimentally verified were found to be putative pig specific.</p> <p>Conclusions</p> <p>In accordance with human and rodent studies we estimate that approximately 30% of the porcine genes undergo alternative splicing. We found a good correlation between EST predicted tissue-specificity and experimentally validated splice events in different porcine tissue. This study indicates that a cluster size of around 50 ESTs is optimal for <it>in silico </it>detection of alternative splicing. Although based on a limited number of splice events, the study supports the notion that alternative splicing could have an important impact on species differentiation since 31% of the splice events studied appears to be species specific.</p

    Identification, Characterization, and Localization of a Novel Kidney Polycystin-1-Polycystin-2 Complex

    Get PDF
    The functions of the two proteins defective in autosomal dominant polycystic kidney disease, polycystin-1 and polycystin-2, have not been fully clarified, but it has been hypothesized that they may heterodimerize to form a "polycystin complex" involved in cell adhesion. In this paper, we demonstrate for the first time the existence of a native polycystin complex in mouse kidney tubular cells transgenic for PKD1, non-transgenic kidney cells, and normal adult human kidney. Polycystin-1 is heavily N-glycosylated, and several glycosylated forms of polycystin-1 differing in their sensitivity to endoglycosidase H (Endo H) were found; in contrast, native polycystin-2 was fully Endo H-sensitive. Using highly specific antibodies to both proteins, we show that polycystin-2 associates selectively with two species of full-length polycystin-1, one Endo H-sensitive and the other Endo H-resistant; importantly, the latter could be further enriched in plasma membrane fractions and co-immunoprecipitated with polycystin-2. Finally, a subpopulation of this complex co-localized to the lateral cell borders of PKD1 transgenic kidney cells. These results demonstrate that polycystin-1 and polycystin-2 interact in vivo to form a stable heterodimeric complex and suggest that disruption of this complex is likely to be of primary relevance to the pathogenesis of cyst formation in autosomal dominant polycystic kidney disease

    Targeted mutagenesis of the Sap47 gene of Drosophila: Flies lacking the synapse associated protein of 47 kDa are viable and fertile

    Get PDF
    BACKGROUND: Conserved proteins preferentially expressed in synaptic terminals of the nervous system are likely to play a significant role in brain function. We have previously identified and molecularly characterized the Sap47 gene which codes for a novel synapse associated protein of 47 kDa in Drosophila. Sequence comparison identifies homologous proteins in numerous species including C. elegans, fish, mouse and human. First hints as to the function of this novel protein family can be obtained by generating mutants for the Sap47 gene in Drosophila. RESULTS: Attempts to eliminate the Sap47 gene through targeted mutagenesis by homologous recombination were unsuccessful. However, several mutants were generated by transposon remobilization after an appropriate insertion line had become available from the Drosophila P-element screen of the Bellen/Hoskins/Rubin/Spradling labs. Characterization of various deletions in the Sap47 gene due to imprecise excision of the P-element identified three null mutants and three hypomorphic mutants. Null mutants are viable and fertile and show no gross structural or obvious behavioural deficits. For cell-specific over-expression and "rescue" of the knock-out flies a transgenic line was generated which expresses the most abundant transcript under the control of the yeast enhancer UAS. In addition, knock-down of the Sap47 gene was achieved by generating 31 transgenic lines expressing Sap47 RNAi constructs, again under UAS control. When driven by a ubiquitously expressed yeast transcription factor (GAL4), Sap47 gene suppression in several of these lines is highly efficient resulting in residual SAP47 protein concentrations in heads as low as 6% of wild type levels. CONCLUSION: The conserved synaptic protein SAP47 of Drosophila is not essential for basic synaptic function. The Sap47 gene region may be refractory to targeted mutagenesis by homologous recombination. RNAi using a construct linking genomic DNA to anti-sense cDNA in our hands is not more effective than using a cDNA-anti-sense cDNA construct. The tools developed in this study will now allow a detailed analysis of the molecular, cellular and systemic function of the SAP47 protein in Drosophila
    corecore