332 research outputs found

    Artificial intelligence for advanced manufacturing quality

    Get PDF
    100 p.This Thesis addresses the challenge of AI-based image quality control systems applied to manufacturing industry, aiming to improve this field through the use of advanced techniques for data acquisition and processing, in order to obtain robust, reliable and optimal systems. This Thesis presents contributions onthe use of complex data acquisition techniques, the application and design of specialised neural networks for the defect detection, and the integration and validation of these systems in production processes. It has been developed in the context of several applied research projects that provided a practical feedback of the usefulness of the proposed computational advances as well as real life data for experimental validation

    High speed in-process defect detection in metal additive manufacturing

    Get PDF
    Additive manufacturing (AM) is defined as the process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing technologies. This fabricating technique is also famously known as ‘3D printing’. Although its entire manufacturing chain is becoming more mature by improved pre-defined design, more accurate heat input and motion system and cleaner in-chamber atmosphere, there are still a number of influential factors that can have a negative impact on the manufacturing process that introduce ‘defects’, which will greatly lessen the density of the parts or even result in failure. For this reason, it is critical to be able to discover them effectively during the manufacturing process. This thesis aims to develop a methodology for the measurement and characterisation of surface texture of AM parts. Typically, optical metrology instruments including focus variation (FV) microscopy and fringe projection (FP) have been used to measure the surface texture of AM samples due to their suitability and reliability in the field of metrology. The thesis also develops optimum filtration methodology to characterise the AM surface by comparing different filters. In the recent decades, machine learning (ML) is presenting a high robustness and applicability in defect detection in comparison to the traditional digital image processing technique. In this thesis, several ML techniques have been investigated into in terms of their suitability for the research based on the processed data secured from the optical measuring instrument. A detailed defect review that collects the information in terms of the defects in LPBF process based on the related research of the global researchers is given. It provides the details about different types of defects and discusses the potential correlation between process parameters and generated defects. ML and AM are both research fields that have developed rapidly in recent decades. In particular, the combination of the two can effectively achieve the purpose of AM parameter optimisation, process control and defect detection. A review of the adaptability of ML to different types of data and its application in feature extraction to achieve in-line or offline defect detection is given. Specifically, it demonstrates how to select proper ML technique given various types of data and how to choose appropriate ML model depending on different forms of defect detection (defect classification and defect segmentation). For data acquisition, the parameters including the magnification of objective lens and illumination source of the optical instrument are optimised to provide accurate and reliable data. Then the surface is pre-processed and filtered with the discovered optimal filtration method. The applicability of different types of machine learning methods for defect detection is also investigated. Results show that principal component analysis may not be a suitable tool for classifying defects if using exclusively whereas convolutional neural network and U-Net (full convolutional network) have shown good performance in correctly classifying defects and segmenting defects from the measured surface. For future work, more measurement instruments which can potentially achieve efficient and accurate metrology can be considered being developed and used, and the variety of samples needs to be increased to provide more types of surface topographies. In addition, how to improve the applicability of PCA in defect classification for AM parts can be studied on and more values of hyperparameters and number of parameters of neural networks can be used to further improve the suitability of the model for the training data

    Manufacturing Metrology

    Get PDF
    Metrology is the science of measurement, which can be divided into three overlapping activities: (1) the definition of units of measurement, (2) the realization of units of measurement, and (3) the traceability of measurement units. Manufacturing metrology originally implicates the measurement of components and inputs for a manufacturing process to assure they are within specification requirements. It can also be extended to indicate the performance measurement of manufacturing equipment. This Special Issue covers papers revealing novel measurement methodologies and instrumentations for manufacturing metrology from the conventional industry to the frontier of the advanced hi-tech industry. Twenty-five papers are included in this Special Issue. These published papers can be categorized into four main groups, as follows: Length measurement: covering new designs, from micro/nanogap measurement with laser triangulation sensors and laser interferometers to very-long-distance, newly developed mode-locked femtosecond lasers. Surface profile and form measurements: covering technologies with new confocal sensors and imagine sensors: in situ and on-machine measurements. Angle measurements: these include a new 2D precision level design, a review of angle measurement with mode-locked femtosecond lasers, and multi-axis machine tool squareness measurement. Other laboratory systems: these include a water cooling temperature control system and a computer-aided inspection framework for CMM performance evaluation

    Monitoring, modelling and quantification of accumulation of damage on masonry structures due to recursive loads

    Get PDF
    The use of induced seismicity is gaining in popularity, particularly in Northern Europe, as people strive to increase local energy supplies. Τhe local building stock, comprising mainly of low-rise domestic masonry structures without any aseismic design, has been found susceptible to these induced tremors. Induced seismicity is generally characterized by frequent small-to-medium magnitude earthquakes in which structural and non-structural damage have been reported. Since the induced earthquakes are caused by third parties liability issues arise and a damage claim mechanism is activated. Typically, any damage are evaluated by visual inspections. This damage assessment process has been found rather cumbersome since visual inspections are laborious, slow and expensive while the identification of the cause of any light damage is a challenging task rendering essential the development of a more reliable approach. The aim of this PhD study is to gain a better understanding of the monitoring, modelling and quantification of accumulation of damage in masonry structures due to recursive loads. Fraeylemaborg, the most emblematic monument in the Groningen region dating back to the 14 th century, has experienced damage due to the induced seismic activity in the region in recent years. A novel monitoring approach is proposed to detect damage accumulation due to induced seismicity on the monument. Results of the monitoring, in particular the monitoring of the effects of induced seismic activity,, as well as the usefulness and need of various monitoring data for similar cases are discussed. A numerical model is developed and calibrated based on experimental findings and different loading scenarios are compared with the actual damage patterns observed on the structure. Vision-based techniques are developed for the detection of damage accumulation in masonry structures in an attempt to enhance effectiveness of the inspection process. In particular, an artificial intelligence solution is proposed for the automatic detection of cracks on masonry structures. A dataset with photographs from masonry structures is produced containing complex backgrounds and various crack types and sizes. Moreover, different convolutional neural networks are evaluated on their efficacy to automatically detect cracks. Furthermore, computer vision and photogrammetry methods are considered along with novel invisible markers for monitoring cracks. The proposed method shifts the marker reflection and its contrast with the background into the invisible wavelength of light (i.e. to the near-infrared) so that the markers are not easily distinguishable. The method is thus particularly vi suitable for monitoring historical buildings where it is important to avoid any interventions or disruption to the authenticity of the basic fabric of construction.. Further on, the quantification and modelling of damage in masonry structures are attempted by taking into consideration the initiation and propagation of damage due to earthquake excitations. The evaluation of damage in masonry structures due to (induced) earthquakes represents a challenging task. Cumulative damage due to subsequent ground motions is expected to have an effect on the seismic capacity of a structure. Crack patterns obtained from experimental campaigns from the literature are investigated and their correlation with damage propagation is examined. Discontinuous modelling techniques are able to reliably reproduce damage initiation and propagation by accounting for residual cracks even for low intensity loading. Detailed models based on the Distinct Element Method and Finite Element Model analysis are considered to capture and quantify the cumulative damage in micro level in masonry subjected to seismic loads. Finally, an experimental campaign is undertaken to investigate the accumulation of damage in masonry structure under repetitive load. Six wall specimens resembling the configuration of a spandrel element are tested under three-point in-plane bending considering different loading protocols. The walls were prepared adopting materials and practices followed in the Groningen region. Different numerical approaches are researched for their efficacy to reproduce the experimental response and any limitations are highlighted

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    OCM 2021 - Optical Characterization of Materials : Conference Proceedings

    Get PDF
    The state of the art in the optical characterization of materials is advancing rapidly. New insights have been gained into the theoretical foundations of this research and exciting developments have been made in practice, driven by new applications and innovative sensor technologies that are constantly evolving. The great success of past conferences proves the necessity of a platform for presentation, discussion and evaluation of the latest research results in this interdisciplinary field
    corecore