2,394 research outputs found

    Hiding in Plain Sight: A Longitudinal Study of Combosquatting Abuse

    Full text link
    Domain squatting is a common adversarial practice where attackers register domain names that are purposefully similar to popular domains. In this work, we study a specific type of domain squatting called "combosquatting," in which attackers register domains that combine a popular trademark with one or more phrases (e.g., betterfacebook[.]com, youtube-live[.]com). We perform the first large-scale, empirical study of combosquatting by analyzing more than 468 billion DNS records---collected from passive and active DNS data sources over almost six years. We find that almost 60% of abusive combosquatting domains live for more than 1,000 days, and even worse, we observe increased activity associated with combosquatting year over year. Moreover, we show that combosquatting is used to perform a spectrum of different types of abuse including phishing, social engineering, affiliate abuse, trademark abuse, and even advanced persistent threats. Our results suggest that combosquatting is a real problem that requires increased scrutiny by the security community.Comment: ACM CCS 1

    Network-based detection of malicious activities - a corporate network perspective

    Get PDF

    Heuristic methods for efficient identification of abusive domain names

    Get PDF

    Promotional Campaigns in the Era of Social Platforms

    Get PDF
    The rise of social media has facilitated the diffusion of information to more easily reach millions of users. While some users connect with friends and organically share information and opinions on social media, others have exploited these platforms to gain influence and profit through promotional campaigns and advertising. The existence of promotional campaigns contributes to the spread of misleading information, spam, and fake news. Thus, these campaigns affect the trustworthiness and reliability of social media and render it as a crowd advertising platform. This dissertation studies the existence of promotional campaigns in social media and explores different ways users and bots (i.e. automated accounts) engage in such campaigns. In this dissertation, we design a suite of detection, ranking, and mining techniques. We study user-generated reviews in online e-commerce sites, such as Google Play, to extract campaigns. We identify cooperating sets of bots and classify their interactions in social networks such as Twitter, and rank the bots based on the degree of their malevolence. Our study shows that modern online social interactions are largely modulated by promotional campaigns such as political campaigns, advertisement campaigns, and incentive-driven campaigns. We measure how these campaigns can potentially impact information consumption of millions of social media users

    Computational Resource Abuse in Web Applications

    Get PDF
    Internet browsers include Application Programming Interfaces (APIs) to support Web applications that require complex functionality, e.g., to let end users watch videos, make phone calls, and play video games. Meanwhile, many Web applications employ the browser APIs to rely on the user's hardware to execute intensive computation, access the Graphics Processing Unit (GPU), use persistent storage, and establish network connections. However, providing access to the system's computational resources, i.e., processing, storage, and networking, through the browser creates an opportunity for attackers to abuse resources. Principally, the problem occurs when an attacker compromises a Web site and includes malicious code to abuse its visitor's computational resources. For example, an attacker can abuse the user's system networking capabilities to perform a Denial of Service (DoS) attack against third parties. What is more, computational resource abuse has not received widespread attention from the Web security community because most of the current specifications are focused on content and session properties such as isolation, confidentiality, and integrity. Our primary goal is to study computational resource abuse and to advance the state of the art by providing a general attacker model, multiple case studies, a thorough analysis of available security mechanisms, and a new detection mechanism. To this end, we implemented and evaluated three scenarios where attackers use multiple browser APIs to abuse networking, local storage, and computation. Further, depending on the scenario, an attacker can use browsers to perform Denial of Service against third-party Web sites, create a network of browsers to store and distribute arbitrary data, or use browsers to establish anonymous connections similarly to The Onion Router (Tor). Our analysis also includes a real-life resource abuse case found in the wild, i.e., CryptoJacking, where thousands of Web sites forced their visitors to perform crypto-currency mining without their consent. In the general case, attacks presented in this thesis share the attacker model and two key characteristics: 1) the browser's end user remains oblivious to the attack, and 2) an attacker has to invest little resources in comparison to the resources he obtains. In addition to the attack's analysis, we present how existing, and upcoming, security enforcement mechanisms from Web security can hinder an attacker and their drawbacks. Moreover, we propose a novel detection approach based on browser API usage patterns. Finally, we evaluate the accuracy of our detection model, after training it with the real-life crypto-mining scenario, through a large scale analysis of the most popular Web sites
    • …
    corecore