4,033 research outputs found

    A Study of Android Malware Detection Techniques and Machine Learning

    Get PDF
    Android OS is one of the widely used mobile Operating Systems. The number of malicious applications and adwares are increasing constantly on par with the number of mobile devices. A great number of commercial signature based tools are available on the market which prevent to an extent the penetration and distribution of malicious applications. Numerous researches have been conducted which claims that traditional signature based detection system work well up to certain level and malware authors use numerous techniques to evade these tools. So given this state of affairs, there is an increasing need for an alternative, really tough malware detection system to complement and rectify the signature based system. Recent substantial research focused on machine learning algorithms that analyze features from malicious application and use those features to classify and detect unknown malicious applications. This study summarizes the evolution of malware detection techniques based on machine learning algorithms focused on the Android OS

    Host-based detection and analysis of Android malware: implication for privilege exploitation

    Get PDF
    The Rapid expansion of mobile Operating Systems has created a proportional development in Android malware infection targeting Android which is the most widely used mobile OS. factors such Android open source platform, low-cost influence the interest of malware writers targeting this mobile OS. Though there are a lot of anti-virus programs for malware detection designed with varying degrees of signatures for this purpose, many don’t give analysis of what the malware does. Some anti-virus engines give clearance during installations of repackaged malicious applications without detection. This paper collected 28 Android malware family samples with a total of 163 sample dataset. A general analysis of the entire sample dataset was created given credence to their individual family samples and year discovered. A general detection and classification of the Android malware corpus was performed using K-means clustering algorithm. Detection rules were written with five major functions for automatic scanning, signature enablement, quarantine and reporting the scan results. The LMD was able to scan a file size of 2048mb and report accurately whether the file is benign or malicious. The K-means clustering algorithm used was set to 5 iteration training phases and was able to classify accurately the malware corpus into benign and malicious files. The obtained result shows that some Android families exploit potential privileges on mobile devices. Information leakage from the victim’s device without consent and payload deposits are some of the results obtained. The result calls proactive measures rather than proactive in tackling malware infection on Android based mobile devices

    A Study of Android Malware Detection Techniques and Machine Learning

    Get PDF
    Abstract Android OS is one of the widely used mobile Operating Systems. The number of malicious applications and adwares are increasing constantly on par with the number of mobile devices. A great number of commercial signature based tools are available on the market which prevent to an extent the penetration and distribution of malicious applications. Numerous researches have been conducted which claims that traditional signature based detection system work well up to certain level and malware authors use numerous techniques to evade these tools. So given this state of affairs, there is an increasing need for an alternative, really tough malware detection system to complement and rectify the signature based system. Recent substantial research focused on machine learning algorithms that analyze features from malicious application and use those features to classify and detect unknown malicious applications. This study summarizes the evolution of malware detection techniques based on machine learning algorithms focused on the Android OS

    Android Malware Family Classification Based on Resource Consumption over Time

    Full text link
    The vast majority of today's mobile malware targets Android devices. This has pushed the research effort in Android malware analysis in the last years. An important task of malware analysis is the classification of malware samples into known families. Static malware analysis is known to fall short against techniques that change static characteristics of the malware (e.g. code obfuscation), while dynamic analysis has proven effective against such techniques. To the best of our knowledge, the most notable work on Android malware family classification purely based on dynamic analysis is DroidScribe. With respect to DroidScribe, our approach is easier to reproduce. Our methodology only employs publicly available tools, does not require any modification to the emulated environment or Android OS, and can collect data from physical devices. The latter is a key factor, since modern mobile malware can detect the emulated environment and hide their malicious behavior. Our approach relies on resource consumption metrics available from the proc file system. Features are extracted through detrended fluctuation analysis and correlation. Finally, a SVM is employed to classify malware into families. We provide an experimental evaluation on malware samples from the Drebin dataset, where we obtain a classification accuracy of 82%, proving that our methodology achieves an accuracy comparable to that of DroidScribe. Furthermore, we make the software we developed publicly available, to ease the reproducibility of our results.Comment: Extended Versio
    • …
    corecore