2,914 research outputs found

    A FPGA system for QRS complex detection based on Integer Wavelet Transform

    Get PDF
    Due to complexity of their mathematical computation, many QRS detectors are implemented in software and cannot operate in real time. The paper presents a real-time hardware based solution for this task. To filter ECG signal and to extract QRS complex it employs the Integer Wavelet Transform. The system includes several components and is incorporated in a single FPGA chip what makes it suitable for direct embedding in medical instruments or wearable health care devices. It has sufficient accuracy (about 95%), showing remarkable noise immunity and low cost. Additionally, each system component is composed of several identical blocks/cells what makes the design highly generic. The capacity of today existing FPGAs allows even dozens of detectors to be placed in a single chip. After the theoretical introduction of wavelets and the review of their application in QRS detection, it will be shown how some basic wavelets can be optimized for easy hardware implementation. For this purpose the migration to the integer arithmetic and additional simplifications in calculations has to be done. Further, the system architecture will be presented with the demonstrations in both, software simulation and real testing. At the end, the working performances and preliminary results will be outlined and discussed. The same principle can be applied with other signals where the hardware implementation of wavelet transform can be of benefit

    Hybrid methods based on empirical mode decomposition for non-invasive fetal heart rate monitoring

    Get PDF
    This study focuses on fetal electrocardiogram (fECG) processing using hybrid methods that combine two or more individual methods. Combinations of independent component analysis (ICA), wavelet transform (WT), recursive least squares (RLS), and empirical mode decomposition (EMD) were used to create the individual hybrid methods. Following four hybrid methods were compared and evaluated in this study: ICA-EMD, ICA-EMD-WT, EMD-WT, and ICA-RLS-EMD. The methods were tested on two databases, the ADFECGDB database and the PhysioNet Challenge 2013 database. Extraction evaluation is based on fetal heart rate (fHR) determination. Statistical evaluation is based on determination of correct detection (ACC), sensitivity (Se), positive predictive value (PPV), and harmonic mean between Se and PPV (F1). In this study, the best results were achieved by means of the ICA-RLS-EMD hybrid method, which achieved accuracy(ACC) > 80% at 9 out of 12 recordings when tested on the ADFECGDB database, reaching an average value of ACC > 84%, Se > 87%, PPV > 92%, and F1 > 90%. When tested on the Physionet Challenge 2013 database, ACC > 80% was achieved at 12 out of 25 recordings with an average value of ACC > 64%, Se > 69%, PPV > 79%, and F1 > 72%.Web of Science8512185120
    • …
    corecore