1,038 research outputs found

    Event and Intrusion Detection Systems for Cyber-Physical Power Systems

    Get PDF
    High speed data from Wide Area Measurement Systems (WAMS) with Phasor Measurement Units (PMU) enables real and non-real time monitoring and control of power systems. The information and communication infrastructure used in WAMS efficiently transports information but introduces cyber security vulnerabilities. Adversaries may exploit such vulnerabilities to create cyber-attacks against the electric power grid. Control centers need to be updated to be resilient not only to well-known power system contingencies but also to cyber-attacks. Therefore, a combined event and intrusion detection systems (EIDS) is required that can provide precise classification for optimal response. This dissertation describes a WAMS cyber-physical power system test bed that was developed to generate datasets and perform cyber-physical power system research related to cyber-physical system vulnerabilities, cyber-attack impact studies, and machine learning algorithms for EIDS. The test bed integrates WAMS components with a Real Time Digital Simulator (RTDS) with hardware in the loop (HIL) and includes various sized power systems with a wide variety of implemented power system and cyber-attack scenarios. This work developed a novel data processing and compression method to address the WAMS big data problem. The State Tracking and Extraction Method (STEM) tracks system states from measurements and creates a compressed sequence of states for each observed scenario. Experiments showed STEM reduces data size significantly without losing key event information in the dataset that is useful to train EIDS and classify events. Two EIDS are proposed and evaluated in this dissertation. Non-Nested Generalized Exemplars (NNGE) is a rule based classifier that creates rules in the form of hyperrectangles to classify events. NNGE uses rule generalization to create a model that has high accuracy and fast classification time. Hoeffding adaptive trees (HAT) is a decision tree classifier and uses incremental learning which is suitable for data stream mining. HAT creates decision trees on the fly from limited number of instances, uses low memory, has fast evaluation time, and adapts to concept changes. The experiments showed NNGE and HAT with STEM make effective EIDS that have high classification accuracy, low false positives, low memory usage, and fast classification times

    Event and Intrusion Detection Systems for Cyber-Physical Power Systems

    Get PDF
    High speed data from Wide Area Measurement Systems (WAMS) with Phasor Measurement Units (PMU) enables real and non-real time monitoring and control of power systems. The information and communication infrastructure used in WAMS efficiently transports information but introduces cyber security vulnerabilities. Adversaries may exploit such vulnerabilities to create cyber-attacks against the electric power grid. Control centers need to be updated to be resilient not only to well-known power system contingencies but also to cyber-attacks. Therefore, a combined event and intrusion detection systems (EIDS) is required that can provide precise classification for optimal response. This dissertation describes a WAMS cyber-physical power system test bed that was developed to generate datasets and perform cyber-physical power system research related to cyber-physical system vulnerabilities, cyber-attack impact studies, and machine learning algorithms for EIDS. The test bed integrates WAMS components with a Real Time Digital Simulator (RTDS) with hardware in the loop (HIL) and includes various sized power systems with a wide variety of implemented power system and cyber-attack scenarios. This work developed a novel data processing and compression method to address the WAMS big data problem. The State Tracking and Extraction Method (STEM) tracks system states from measurements and creates a compressed sequence of states for each observed scenario. Experiments showed STEM reduces data size significantly without losing key event information in the dataset that is useful to train EIDS and classify events. Two EIDS are proposed and evaluated in this dissertation. Non-Nested Generalized Exemplars (NNGE) is a rule based classifier that creates rules in the form of hyperrectangles to classify events. NNGE uses rule generalization to create a model that has high accuracy and fast classification time. Hoeffding adaptive trees (HAT) is a decision tree classifier and uses incremental learning which is suitable for data stream mining. HAT creates decision trees on the fly from limited number of instances, uses low memory, has fast evaluation time, and adapts to concept changes. The experiments showed NNGE and HAT with STEM make effective EIDS that have high classification accuracy, low false positives, low memory usage, and fast classification times

    Evaluation of Cyber Sensors for Enhancing Situational Awareness in the ICS Environment

    Get PDF
    Industrial Control Systems (ICS) monitor and control operations associated with the national critical infrastructure (e.g., electric power grid, oil and gas pipelines and water treatment facilities). These systems rely on technologies and architectures that were designed for system reliability and availability. Security associated with ICS was never an inherent concern, primarily due to the protections afforded by network isolation. However, a trend in ICS operations is to migrate to commercial networks via TCP/IP in order to leverage commodity benefits and cost savings. As a result, system vulnerabilities are now exposed to the online community. Indeed, recent research has demonstrated that many exposed ICS devices are being discovered using readily available applications (e.g., Shodan search engine and Google-esque queries). Due to the lack of security and logging capabilities for ICS, most knowledge about attacks are derived from real world incidents after an attack has already occurred. Further, the distributed nature and volume of devices requires a cost effective solution to increase situational awareness. This research evaluates two low cost sensor platforms for enhancing situational awareness in the ICS environment. Data obtained from the sensors provide insight into attack tactics (e.g., port scans, Nessus scans, Metasploit modules, and zero-day exploits) and characteristics (e.g., attack origin, frequency, and level of persistence). The results indicate that the low cost cyber sensors perform sufficiently within the ICS environment. Furthermore, findings enable security professionals to draw an accurate, real-time awareness of the threats against ICS devices and help shift the security posture from reactionary to preventative

    Cyber Attack Surface Mapping For Offensive Security Testing

    Get PDF
    Security testing consists of automated processes, like Dynamic Application Security Testing (DAST) and Static Application Security Testing (SAST), as well as manual offensive security testing, like Penetration Testing and Red Teaming. This nonautomated testing is frequently time-constrained and difficult to scale. Previous literature suggests that most research is spent in support of improving fully automated processes or in finding specific vulnerabilities, with little time spent improving the interpretation of the scanned attack surface critical to nonautomated testing. In this work, agglomerative hierarchical clustering is used to compress the Internet-facing hosts of 13 representative companies as collected by the Shodan search engine, resulting in an average 89% reduction in attack surface complexity. The work is then extended to map network services and also analyze the characteristics of the Log4Shell security vulnerability and its impact on attack surface mapping. The results highlighted outliers indicative of possible anti-patterns as well as opportunities to improve how testers and tools map the web attack surface. Ultimately the work is extended to compress web attack surfaces based on security relevant features, demonstrating via accuracy measurements not only that this compression is feasible but can also be automated. In the process a framework is created which could be extended in future work to compress other attack surfaces, including physical structures/campuses for physical security testing and even humans for social engineering tests

    Autoencoder based anomaly detection for SCADA networks

    Get PDF
    Supervisory control and data acquisition (SCADA) systems are industrial control systems that are used to monitor critical infrastructures such as airports, transport, health, and public services of national importance. These are cyber physical systems, which are increasingly integrated with networks and internet of things devices. However, this results in a larger attack surface for cyber threats, making it important to identify and thwart cyber-attacks by detecting anomalous network traffic patterns. Compared to other techniques, as well as detecting known attack patterns, machine learning can also detect new and evolving threats. Autoencoders are a type of neural network that generates a compressed representation of its input data and through reconstruction loss of inputs can help identify anomalous data. This paper proposes the use of autoencoders for unsupervised anomaly-based intrusion detection using an appropriate differentiating threshold from the loss distribution and demonstrate improvements in results compared to other techniques for SCADA gas pipeline dataset

    Scalable Honeypot Monitoring and Analytics

    Get PDF
    Honeypot systems with a large number of instances pose new challenges in terms of monitoring and analytics. They produce a significant amount of data and require the analyst to monitor every new honeypot instance in the system. Specifically, current approaches require each honeypot instance to be monitored and analysed individually. Therefore, these cannot scale to support scenarios in which a large number of honeypots are used. Furthermore, amalgamating data from a large number of honeypots presents new opportunities to analyse trends. This thesis proposes a scalable monitoring and analytics system that is designed to address this challenge. It consists of three components: monitoring, analysis and visualisation. The system automatically monitors each new honeypot, reduces the amount of collected data and stores it centrally. All gathered data is analysed in order to identify patterns of attacker behaviour. Visualisation conveniently displays the analysed data to an analyst. A user study was performed to evaluate the system. It shows that the solution has met the requirements posed to a scalable monitoring and analytics system. In particular, the monitoring and analytics can be implemented using only open-source software and does not noticeably impact the performance of individual honeypots or the scalability of the overall honeypot system. The thesis also discusses several variations and extensions, including detection of new patterns, and the possibility of providing feedback when used in an educational setting, monitoring attacks by information-security students
    corecore