22 research outputs found

    Analysis of regional large-gradient land subsidence in the Alto Guadalentín Basin (Spain) using open-access aerial LiDAR datasets

    Get PDF
    Land subsidence associated with groundwater overexploitation in the Alto Guadalentín Basin (Spain) aquifer system has been detected during the last decades. In this work, for the first time, we propose a new point cloud differencing methodology to detect land subsidence at basin scale, based on the multiscale model-to-model cloud comparison (M3C2) algorithm. This method is applied to two open-access airborne LiDAR datasets acquired in 2009 and 2016, respectively. First the internal edge connection errors in the different flight lines were addressed by means of a smoothing point cloud method. LiDAR datasets capture information from ground and non-ground points. Therefore, a method combining gradient filtering and cloth simulation filtering (CSF) algorithms was applied to remove non-ground points. The iterative closest point (ICP) algorithm was used for point cloud registration of both point clouds exhibiting a very stable and robust performance. The results show that vertical deformation rates are up to −14 cm/year in the basin from 2009 to 2016, in agreement with the displacement reported by previous studies. LiDAR results have been compared to the velocity measured by continuous GNSS stations and an InSAR dataset. For the GNSS-LiDAR and InSAR-LiDAR comparison, we computed a common 100 × 100 m grid in order to assess any similarities and discrepancies. The results show a good agreement between the vertical displacements obtained from the three different surveying techniques. Furthermore, LiDAR results were compared with the distribution of compressible soil thickness showing a clear relationship. The study underlines the potential of open-access and non-customized LiDAR to monitor the distribution and magnitude of vertical deformations in areas prone to be affected by groundwater-withdrawal-induced land subsidence.This research was funded by the ESA-MOST China DRAGON-5 project (ref. 59339) and by a Chinese Scholarship Council studentship awarded to Liuru Hu (Ref. 202004180062). María I. Navarro-Hernández and Guadalupe Bru are funded by the PRIMA programme supported by the European Union under grant agreement No 1924, project RESERVOIR

    Progress in Landslide Research and Technology, Volume 1 Issue 2, 2022

    Get PDF
    This open access book provides an overview of the progress in landslide research and technology and is part of a book series of the International Consortium on Landslides (ICL). It gives an overview of recent progress in landslide research and technology for practical applications and the benefit for the society contributing to understanding and reducing landslide disaster risk

    Characterization of Ground Deformation Associated with Shallow Groundwater Processes Using Satellite Radar Interferometry

    Get PDF
    Shallow groundwater processes maylead to ground deformation and even geohazards. With the features of day-and-night accessibility and large-scale coverage, time-series interferometric synthetic aperture radar (InSAR) has proven a useful tool for mapping the deformation over various landscapes at cm to mm level with weekly to monthly updates. However, it has limitations such as, decorrelation,atmospheric artifacts, topographic errors, andunwrapping errors, in particular for the hilly, vegetated, and complicated deformation patterns. In this dissertation, I focus on characterizing the ground deformation over landslides, aquifer systems, and mine tailings impoundment, using the designed advanced time-series InSAR strategy, as well as theinterdisciplinary knowledge of geodesy, hydrology, geophysics, and geology. Northwestern USA has been exposed to extreme landslide hazards due to steep terrain, high precipitation, and loose root support after wildfire. I characterize the rainfall-triggered movements of Crescent Lake landslide, Washington State. The seasonal deformation at the lobe, with larger magnitudes than the downslope riverbank, suggests an amplified hydrological loading effect due to a thicker unconsolidated zone. High-temporal-resolution InSAR and GPS data reveal dynamic landslide motions. Threshold rainfall intensities and durations wet seasons have been associated with observed movement upon shearing: antecedent rainfall triggered precursory slope-normal subsidence, and the consequent increase in pore pressure at the basal surface reduces friction and instigates downslope slip over the course of less than one month. In addition, a quasi-three-dimensional deformation field is created using multiple spaceborne InSAR observations constrained by the topographical slope, and is further used to invert for the complex geometry of landslide basal surface based on mass conservation. Aquifer skeletons deform in response to hydraulic head changes with various time scales of delay and sensitivity. I investigate the spatio-temporal correlation among deformation, hydrological records and earthquake records over Salt Lake Valley, Utah State. A clear long-term and seasonal correlation exists between surface uplift/subsidence and groundwater recharge/discharge, allowing me to quantify hydrogeological properties. Long-term uplift reflects the net pore pressure increase associated with prolonged water recharge, probably decades ago. The distributions of previously and newly mapped faults suggest that the faultsdisrupt the groundwater flow andpartition hydrological units. Mine tailings gradual settle as the pore pressure dissipates and the terrain subsides, andtailings embankment failures can be extremely hazardous. I investigate the dynamics of consolidation settlement over the tailings impoundment in the vicinity of Great Salt Lake, Utah State, as well as its associated impacts to the surrounding infrastructures. Largest subsidence has been observed around the low-permeable decant pond clay at the northeast corner.The geotechnical consolidation model reveals and predicts the long-term exponentially decaying settlement process. My studies have demonstrated that InSAR methods can advance our understanding about the potential anthropogenic impacts and natural hydrological modulations on various geodynamic settings in geodetic time scale

    Earth Observation for Crustal Tectonics and Earthquake Hazards

    Get PDF
    In this paper, we illustrate some of the current methods for the exploitation of data from Earth Observing satellites to measure and understand earthquakes and shallow crustal tectonics. The aim of applying such methods to Earth Observation data is to improve our knowledge of the active fault sources that generate earthquake shaking hazards. We provide examples of the use of Earth Observation, including the measurement and modelling of earthquake deformation processes and the earthquake cycle using both radar and optical imagery. We also highlight the importance of combining these orbiting satellite datasets with airborne, in situ and ground-based geophysical measurements to fully characterise the spatial and timescale of temporal scales of the triggering of earthquakes from an example of surface water loading. Finally, we conclude with an outlook on the anticipated shift from the more established method of observing earthquakes to the systematic measurement of the longer-term accumulation of crustal strain

    Remote Sensing of Natural Hazards

    Get PDF
    Each year, natural hazards such as earthquakes, cyclones, flooding, landslides, wildfires, avalanches, volcanic eruption, extreme temperatures, storm surges, drought, etc., result in widespread loss of life, livelihood, and critical infrastructure globally. With the unprecedented growth of the human population, largescale development activities, and changes to the natural environment, the frequency and intensity of extreme natural events and consequent impacts are expected to increase in the future.Technological interventions provide essential provisions for the prevention and mitigation of natural hazards. The data obtained through remote sensing systems with varied spatial, spectral, and temporal resolutions particularly provide prospects for furthering knowledge on spatiotemporal patterns and forecasting of natural hazards. The collection of data using earth observation systems has been valuable for alleviating the adverse effects of natural hazards, especially with their near real-time capabilities for tracking extreme natural events. Remote sensing systems from different platforms also serve as an important decision-support tool for devising response strategies, coordinating rescue operations, and making damage and loss estimations.With these in mind, this book seeks original contributions to the advanced applications of remote sensing and geographic information systems (GIS) techniques in understanding various dimensions of natural hazards through new theory, data products, and robust approaches

    Novel Approaches in Landslide Monitoring and Data Analysis

    Get PDF
    Significant progress has been made in the last few years that has expanded the knowledge of landslide processes. It is, therefore, necessary to summarize, share and disseminate the latest knowledge and expertise. This Special Issue brings together novel research focused on landslide monitoring, modelling and data analysis

    Geomorphometry 2020. Conference Proceedings

    Get PDF
    Geomorphometry is the science of quantitative land surface analysis. It gathers various mathematical, statistical and image processing techniques to quantify morphological, hydrological, ecological and other aspects of a land surface. Common synonyms for geomorphometry are geomorphological analysis, terrain morphometry or terrain analysis and land surface analysis. The typical input to geomorphometric analysis is a square-grid representation of the land surface: a digital elevation (or land surface) model. The first Geomorphometry conference dates back to 2009 and it took place in Zürich, Switzerland. Subsequent events were in Redlands (California), Nánjīng (China), Poznan (Poland) and Boulder (Colorado), at about two years intervals. The International Society for Geomorphometry (ISG) and the Organizing Committee scheduled the sixth Geomorphometry conference in Perugia, Italy, June 2020. Worldwide safety measures dictated the event could not be held in presence, and we excluded the possibility to hold the conference remotely. Thus, we postponed the event by one year - it will be organized in June 2021, in Perugia, hosted by the Research Institute for Geo-Hydrological Protection of the Italian National Research Council (CNR IRPI) and the Department of Physics and Geology of the University of Perugia. One of the reasons why we postponed the conference, instead of canceling, was the encouraging number of submitted abstracts. Abstracts are actually short papers consisting of four pages, including figures and references, and they were peer-reviewed by the Scientific Committee of the conference. This book is a collection of the contributions revised by the authors after peer review. We grouped them in seven classes, as follows: • Data and methods (13 abstracts) • Geoheritage (6 abstracts) • Glacial processes (4 abstracts) • LIDAR and high resolution data (8 abstracts) • Morphotectonics (8 abstracts) • Natural hazards (12 abstracts) • Soil erosion and fluvial processes (16 abstracts) The 67 abstracts represent 80% of the initial contributions. The remaining ones were either not accepted after peer review or withdrawn by their Authors. Most of the contributions contain original material, and an extended version of a subset of them will be included in a special issue of a regular journal publication

    Surface deformation analysis in Northeast Italy by using PS-InSAR and GNSS data

    Get PDF
    In the present study, we exploited the potential of satellite-based geodetic data for detecting and measuring surface displacement in Northeast Italy. In this contest, we focused mainly on 1) the estimation of the interseismic deformation during the satellites’ observation period, 2) the detection and analysis of the main deformation patterns, and 3) the correlation of the signals to the active tectonic structures. Despite the low convergence rates (~ 1.5-3 mm/yr), Northeast Italy is an active tectonic area, as testified by the instrumental and historical seismicity. The Adria-Eurasia convergence is mainly accommodated by the thrusts and strike-slip faults of the Southeastern Alps and the External Dinarides, located in the northern and northeastern sectors of the study area. The Venetian-Friulian plain and the Adriatic coasts, affected by active subsidence, dominate the southern region. We used the Stanford Method for Persistent Scatterers (StaMPS) applied to Sentinel-1 SAR images acquired along the ascending and descending orbit tracks between 2015 and 2019. Based on a stack of single-master differential interferograms, we detected coherent and temporally stable pixels based on amplitude and phase noise analysis. After applying spatial-temporal filters and additional post-processing operations to refine the measurements, we used Adria-fixed GNSS velocities derived by permanent stations in the study area to calibrate the InSAR velocities. The outcome consists of Line-OF-Sight (LOS) mean ground velocity maps derived by displacement time series along the radar directions for each satellite track. The combination of the LOS datasets yields vertical and east-west velocity maps, which are mostly in agreement with GNSS data and previous geodetic studies. Based on our measurements, we observe a significant positive velocity gradient of 1 mm/yr across the westernmost sector of the Alpine system, suggesting an aseismic motion of the root of the Bassano-Valdobbiadene thrust. The positive vertical gradients (~1 and up to 2 mm/yr) across the Alpine-Dinaric systems in the central and eastern sectors and the eastward motion that increases northeastward (1-2 mm/yr) may be related to the active Alpine-Dinaric thrusts and strike-slip faults. We also suggest that the detected westward motion of the Friulian plain (around Udine) might be attributed to the presence of tectonic structures characterized by transcurrent-transpressive kinematics. Finally, we detect other signals, such as the significant subsidence (2-4 mm/yr) along the coasts and on the southern Venetian-Friulian plain, confirming the correlation between subsidence and the geological setting of the study area. In conclusion, our study confirms the potential of MT-InSAR and GNSS data for the estimation of the surface deformations in response to active tectonics, even in areas characterized by low deformation rates, such as Northeast Italy.In the present study, we exploited the potential of satellite-based geodetic data for detecting and measuring surface displacement in Northeast Italy. In this contest, we focused mainly on 1) the estimation of the interseismic deformation during the satellites’ observation period, 2) the detection and analysis of the main deformation patterns, and 3) the correlation of the signals to the active tectonic structures. Despite the low convergence rates (~ 1.5-3 mm/yr), Northeast Italy is an active tectonic area, as testified by the instrumental and historical seismicity. The Adria-Eurasia convergence is mainly accommodated by the thrusts and strike-slip faults of the Southeastern Alps and the External Dinarides, located in the northern and northeastern sectors of the study area. The Venetian-Friulian plain and the Adriatic coasts, affected by active subsidence, dominate the southern region. We used the Stanford Method for Persistent Scatterers (StaMPS) applied to Sentinel-1 SAR images acquired along the ascending and descending orbit tracks between 2015 and 2019. Based on a stack of single-master differential interferograms, we detected coherent and temporally stable pixels based on amplitude and phase noise analysis. After applying spatial-temporal filters and additional post-processing operations to refine the measurements, we used Adria-fixed GNSS velocities derived by permanent stations in the study area to calibrate the InSAR velocities. The outcome consists of Line-OF-Sight (LOS) mean ground velocity maps derived by displacement time series along the radar directions for each satellite track. The combination of the LOS datasets yields vertical and east-west velocity maps, which are mostly in agreement with GNSS data and previous geodetic studies. Based on our measurements, we observe a significant positive velocity gradient of 1 mm/yr across the westernmost sector of the Alpine system, suggesting an aseismic motion of the root of the Bassano-Valdobbiadene thrust. The positive vertical gradients (~1 and up to 2 mm/yr) across the Alpine-Dinaric systems in the central and eastern sectors and the eastward motion that increases northeastward (1-2 mm/yr) may be related to the active Alpine-Dinaric thrusts and strike-slip faults. We also suggest that the detected westward motion of the Friulian plain (around Udine) might be attributed to the presence of tectonic structures characterized by transcurrent-transpressive kinematics. Finally, we detect other signals, such as the significant subsidence (2-4 mm/yr) along the coasts and on the southern Venetian-Friulian plain, confirming the correlation between subsidence and the geological setting of the study area. In conclusion, our study confirms the potential of MT-InSAR and GNSS data for the estimation of the surface deformations in response to active tectonics, even in areas characterized by low deformation rates, such as Northeast Italy

    The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation

    Get PDF
    This Synthetic Aperture Radar (SAR) handbook of applied methods for forest monitoring and biomass estimation has been developed by SERVIR in collaboration with SilvaCarbon to address pressing needs in the development of operational forest monitoring services. Despite the existence of SAR technology with all-weather capability for over 30 years, the applied use of this technology for operational purposes has proven difficult. This handbook seeks to provide understandable, easy-to-assimilate technical material to remote sensing specialists that may not have expertise on SAR but are interested in leveraging SAR technology in the forestry sector

    Progress in Landslide Research and Technology, Volume 1 Issue 1, 2022

    Get PDF
    This open access book provides an overview of the progress in landslide research and technology and is part of a book series of the International Consortium on Landslides (ICL). The book provides a common platform for the publication of recent progress in landslide research and technology for practical applications and the benefit for the society contributing to the Kyoto Landslide Commitment 2020, which is expected to continue up to 2030 and even beyond to globally promote the understanding and reduction of landslide disaster risk, as well as to address the 2030 Agenda Sustainable Development Goals
    corecore