400 research outputs found

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Digital Multimedia Forensics and Anti-Forensics

    Get PDF
    As the use of digital multimedia content such as images and video has increased, so has the means and the incentive to create digital forgeries. Presently, powerful editing software allows forgers to create perceptually convincing digital forgeries. Accordingly, there is a great need for techniques capable of authenticating digital multimedia content. In response to this, researchers have begun developing digital forensic techniques capable of identifying digital forgeries. These forensic techniques operate by detecting imperceptible traces left by editing operations in digital multimedia content. In this dissertation, we propose several new digital forensic techniques to detect evidence of editing in digital multimedia content. We begin by identifying the fingerprints left by pixel value mappings and show how these can be used to detect the use of contrast enhancement in images. We use these fingerprints to perform a number of additional forensic tasks such as identifying cut-and-paste forgeries, detecting the addition of noise to previously JPEG compressed images, and estimating the contrast enhancement mapping used to alter an image. Additionally, we consider the problem of multimedia security from the forger's point of view. We demonstrate that an intelligent forger can design anti-forensic operations to hide editing fingerprints and fool forensic techniques. We propose an anti-forensic technique to remove compression fingerprints from digital images and show that this technique can be used to fool several state-of-the-art forensic algorithms. We examine the problem of detecting frame deletion in digital video and develop both a technique to detect frame deletion and an anti-forensic technique to hide frame deletion fingerprints. We show that this anti-forensic operation leaves behind fingerprints of its own and propose a technique to detect the use of frame deletion anti-forensics. The ability of a forensic investigator to detect both editing and the use of anti-forensics results in a dynamic interplay between the forger and forensic investigator. We use develop a game theoretic framework to analyze this interplay and identify the set of actions that each party will rationally choose. Additionally, we show that anti-forensics can be used protect against reverse engineering. To demonstrate this, we propose an anti-forensic module that can be integrated into digital cameras to protect color interpolation methods

    NEW CHANGE DETECTION MODELS FOR OBJECT-BASED ENCODING OF PATIENT MONITORING VIDEO

    Get PDF
    The goal of this thesis is to find a highly efficient algorithm to compress patient monitoring video. This type of video mainly contains local motions and a large percentage of idle periods. To specifically utilize these features, we present an object-based approach, which decomposes input video into three objects representing background, slow-motion foreground and fast-motion foreground. Encoding these three video objects with different temporal scalabilities significantly improves the coding efficiency in terms of bitrate vs. visual quality. The video decomposition is built upon change detection which identifies content changes between video frames. To improve the robustness of capturing small changes, we contribute two new change detection models. The model built upon Markov random theory discriminates foreground containing the patient being monitored. The other model, called covariance test method, identifies constantly changing content by exploiting temporal correlation in multiple video frames. Both models show great effectiveness in constructing the defined video objects. We present detailed algorithms of video object construction, as well as experimental results on the object-based coding of patient monitoring video

    Highly efficient low-level feature extraction for video representation and retrieval.

    Get PDF
    PhDWitnessing the omnipresence of digital video media, the research community has raised the question of its meaningful use and management. Stored in immense multimedia databases, digital videos need to be retrieved and structured in an intelligent way, relying on the content and the rich semantics involved. Current Content Based Video Indexing and Retrieval systems face the problem of the semantic gap between the simplicity of the available visual features and the richness of user semantics. This work focuses on the issues of efficiency and scalability in video indexing and retrieval to facilitate a video representation model capable of semantic annotation. A highly efficient algorithm for temporal analysis and key-frame extraction is developed. It is based on the prediction information extracted directly from the compressed domain features and the robust scalable analysis in the temporal domain. Furthermore, a hierarchical quantisation of the colour features in the descriptor space is presented. Derived from the extracted set of low-level features, a video representation model that enables semantic annotation and contextual genre classification is designed. Results demonstrate the efficiency and robustness of the temporal analysis algorithm that runs in real time maintaining the high precision and recall of the detection task. Adaptive key-frame extraction and summarisation achieve a good overview of the visual content, while the colour quantisation algorithm efficiently creates hierarchical set of descriptors. Finally, the video representation model, supported by the genre classification algorithm, achieves excellent results in an automatic annotation system by linking the video clips with a limited lexicon of related keywords

    Fitting and tracking of a scene model in very low bit rate video coding

    Get PDF

    Signal processing for improved MPEG-based communication systems

    Get PDF

    Current video compression algorithms: Comparisons, optimizations, and improvements

    Full text link
    Compression algorithms have evolved significantly in recent years. Audio, still image, and video can be compressed significantly by taking advantage of the natural redundancies that occur within them. Video compression in particular has made significant advances. MPEG-1 and MPEG-2, two of the major video compression standards, allowed video to be compressed at very low bit rates compared to the original video. The compression ratio for video that is perceptually lossless (losses can\u27t be visually perceived) can even be as high as 40 or 50 to 1 for certain videos. Videos with a small degradation in quality can be compressed at 100 to 1 or more; Although the MPEG standards provided low bit rate compression, even higher quality compression is required for efficient transmission over limited bandwidth networks, wireless networks, and broadcast mediums. Significant gains have been made over the current MPEG-2 standard in a newly developed standard called the Advanced Video Coder, also known as H.264 and MPEG-4 part 10. (Abstract shortened by UMI.)
    corecore