755 research outputs found

    Replication study: Development and validation of deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs

    Get PDF
    Replication studies are essential for validation of new methods, and are crucial to maintain the high standards of scientific publications, and to use the results in practice. We have attempted to replicate the main method in 'Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs' published in JAMA 2016; 316(22). We re-implemented the method since the source code is not available, and we used publicly available data sets. The original study used non-public fundus images from EyePACS and three hospitals in India for training. We used a different EyePACS data set from Kaggle. The original study used the benchmark data set Messidor-2 to evaluate the algorithm's performance. We used the same data set. In the original study, ophthalmologists re-graded all images for diabetic retinopathy, macular edema, and image gradability. There was one diabetic retinopathy grade per image for our data sets, and we assessed image gradability ourselves. Hyper-parameter settings were not described in the original study. But some of these were later published. We were not able to replicate the original study. Our algorithm's area under the receiver operating curve (AUC) of 0.94 on the Kaggle EyePACS test set and 0.80 on Messidor-2 did not come close to the reported AUC of 0.99 in the original study. This may be caused by the use of a single grade per image, different data, or different not described hyper-parameter settings. This study shows the challenges of replicating deep learning, and the need for more replication studies to validate deep learning methods, especially for medical image analysis. Our source code and instructions are available at: https://github.com/mikevoets/jama16-retina-replicationComment: The third version of this paper includes results from replication after certain hyper-parameters were published in later article. 16 pages, 6 figures, 1 table, presented at NOBIM 201

    Detection of Hard Exudates in Retinal Fundus Images using Deep Learning

    Full text link
    Diabetic Retinopathy (DR) is a retinal disorder that affects the people having diabetes mellitus for a long time (20 years). DR is one of the main reasons for the preventable blindness all over the world. If not detected early the patient may progress to severe stages of irreversible blindness. Lack of Ophthalmologists poses a serious problem for the growing diabetes patients. It is advised to develop an automated DR screening system to assist the Ophthalmologist in decision making. Hard exudates develop when DR is present. It is important to detect hard exudates in order to detect DR in an early stage. Research has been done to detect hard exudates using regular image processing techniques and Machine Learning techniques. Here, a deep learning algorithm has been presented in this paper that detects hard exudates in fundus images of the retina.Comment: 5 Pages, 3 figures, 2 tables, International Conference on Systems, Computation, Automation and Networking http://icscan.in

    Lesion detection and Grading of Diabetic Retinopathy via Two-stages Deep Convolutional Neural Networks

    Full text link
    We propose an automatic diabetic retinopathy (DR) analysis algorithm based on two-stages deep convolutional neural networks (DCNN). Compared to existing DCNN-based DR detection methods, the proposed algorithm have the following advantages: (1) Our method can point out the location and type of lesions in the fundus images, as well as giving the severity grades of DR. Moreover, since retina lesions and DR severity appear with different scales in fundus images, the integration of both local and global networks learn more complete and specific features for DR analysis. (2) By introducing imbalanced weighting map, more attentions will be given to lesion patches for DR grading, which significantly improve the performance of the proposed algorithm. In this study, we label 12,206 lesion patches and re-annotate the DR grades of 23,595 fundus images from Kaggle competition dataset. Under the guidance of clinical ophthalmologists, the experimental results show that our local lesion detection net achieve comparable performance with trained human observers, and the proposed imbalanced weighted scheme also be proved to significantly improve the capability of our DCNN-based DR grading algorithm
    corecore