4,718 research outputs found

    Detection of denial of service attacks against domain name system using neural networks

    Get PDF
    In this paper we introduce an intrusion detection system for Denial of Service (DoS) attacks against Domain Name System (DNS). Our system architecture consists of two most important parts: a statistical preprocessor and a neural network classifier. The preprocessor extracts required statistical features in a shorttime frame from traffic received by the target name server. We compared three different neural networks for detecting and classifying different types of DoS attacks. The proposed system is evaluated in a simulated network and showed that the best performed neural network is a feed-forward backpropagation with an accuracy of 99%

    Detection of Denial of Service Attacks against Domain Name System Using Neural Networks

    Get PDF
    Along with the explosive growth of the Internet, the demand for efficient and secure Internet Infrastructure has been increasing. For the entire chain of Internet connectivity the Domain Name System (DNS) provides name to address mapping services. Hackers exploit this fact to damage different parts of Internet. In order to prevent this system from different types of attacks, we need to prepare a classification of possible security threats against DNS. This dissertation focuses on Denial of Service (DoS) attacks as the major security issue during last years, and gives an overview of techniques used to discover and analyze them. The process of detection and classification of DoS against DNS has been presented in two phases in our model. The proposed system architecture consists of a statistical pre-processor and a machine learning engine. The first step in our work was to generate the DNS traffic in normal and attack situations for using as the input of our intrusion detection system (IDS). With the prior knowledge of DoS attacks against DNS, we used a network simulator to model DNS traffic with high variability. Therefore, the difficulty of creating different scenarios of attacks in a real environment has been decreased. The pre-processor, processes the collected data statistically and derives the final variable values. These parameters are the inputs of the detector engine. In the current research for our machine learning engine, we aimed to find the optimum machine learning algorithm to be used as an IDS. The performance of our system was measured in terms of detection rate, accuracy, and false alarm rate. The results indicated that the three layered back propagation neural network with a 3-7-3 structure provides a detection rate of 99.55% for direct DoS attacks and 97.82% for amplification DoS attacks. It can give us 99% accuracy and an acceptable false alarm rate of 0.28% comparing to other types of classifiers

    Intrusion Detection System using Bayesian Network Modeling

    Get PDF
    Computer Network Security has become a critical and important issue due to ever increasing cyber-crimes. Cybercrimes are spanning from simple piracy crimes to information theft in international terrorism. Defence security agencies and other militarily related organizations are highly concerned about the confidentiality and access control of the stored data. Therefore, it is really important to investigate on Intrusion Detection System (IDS) to detect and prevent cybercrimes to protect these systems. This research proposes a novel distributed IDS to detect and prevent attacks such as denial service, probes, user to root and remote to user attacks. In this work, we propose an IDS based on Bayesian network classification modelling technique. Bayesian networks are popular for adaptive learning, modelling diversity network traffic data for meaningful classification details. The proposed model has an anomaly based IDS with an adaptive learning process. Therefore, Bayesian networks have been applied to build a robust and accurate IDS. The proposed IDS has been evaluated against the KDD DAPRA dataset which was designed for network IDS evaluation. The research methodology consists of four different Bayesian networks as classification models, where each of these classifier models are interconnected and communicated to predict on incoming network traffic data. Each designed Bayesian network model is capable of detecting a major category of attack such as denial of service (DoS). However, all four Bayesian networks work together to pass the information of the classification model to calibrate the IDS system. The proposed IDS shows the ability of detecting novel attacks by continuing learning with different datasets. The testing dataset constructed by sampling the original KDD dataset to contain balance number of attacks and normal connections. The experiments show that the proposed system is effective in detecting attacks in the test dataset and is highly accurate in detecting all major attacks recorded in DARPA dataset. The proposed IDS consists with a promising approach for anomaly based intrusion detection in distributed systems. Furthermore, the practical implementation of the proposed IDS system can be utilized to train and detect attacks in live network traffi

    Applications of Machine Learning to Threat Intelligence, Intrusion Detection and Malware

    Get PDF
    Artificial Intelligence (AI) and Machine Learning (ML) are emerging technologies with applications to many fields. This paper is a survey of use cases of ML for threat intelligence, intrusion detection, and malware analysis and detection. Threat intelligence, especially attack attribution, can benefit from the use of ML classification. False positives from rule-based intrusion detection systems can be reduced with the use of ML models. Malware analysis and classification can be made easier by developing ML frameworks to distill similarities between the malicious programs. Adversarial machine learning will also be discussed, because while ML can be used to solve problems or reduce analyst workload, it also introduces new attack surfaces

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    A cognitive based Intrusion detection system

    Full text link
    Intrusion detection is one of the primary mechanisms to provide computer networks with security. With an increase in attacks and growing dependence on various fields such as medicine, commercial, and engineering to give services over a network, securing networks have become a significant issue. The purpose of Intrusion Detection Systems (IDS) is to make models which can recognize regular communications from abnormal ones and take necessary actions. Among different methods in this field, Artificial Neural Networks (ANNs) have been widely used. However, ANN-based IDS, has two main disadvantages: 1- Low detection precision. 2- Weak detection stability. To overcome these issues, this paper proposes a new approach based on Deep Neural Network (DNN. The general mechanism of our model is as follows: first, some of the data in dataset is properly ranked, afterwards, dataset is normalized with Min-Max normalizer to fit in the limited domain. Then dimensionality reduction is applied to decrease the amount of both useless dimensions and computational cost. After the preprocessing part, Mean-Shift clustering algorithm is the used to create different subsets and reduce the complexity of dataset. Based on each subset, two models are trained by Support Vector Machine (SVM) and deep learning method. Between two models for each subset, the model with a higher accuracy is chosen. This idea is inspired from philosophy of divide and conquer. Hence, the DNN can learn each subset quickly and robustly. Finally, to reduce the error from the previous step, an ANN model is trained to gain and use the results in order to be able to predict the attacks. We can reach to 95.4 percent of accuracy. Possessing a simple structure and less number of tunable parameters, the proposed model still has a grand generalization with a high level of accuracy in compared to other methods such as SVM, Bayes network, and STL.Comment: 18 pages, 6 figure
    corecore