454 research outputs found

    Reliable and Fast Forgery Detection using FINE GRAINED approach

    Get PDF
    Forensic science encompassing the recovery and investigation of material found in digital devices, often in relation to computer crime. A digital forensic investigation commonly consists of 3 stages: acquisition or imaging of exhibits, analysis, and reporting. Previously, it is able to detect tampered images at high accuracy based on some carefully designed mechanisms,localization of the tampered regions in a fake image still presents many challenges, especially when the type of tampering operation is unknown. Later on, necessary to integrate different forensic approaches in order to obtain better localization performance. However, several important issues have not been comprehensively studied, to improve/readjust proper forensic approaches, and to fuse the detection results of different forensic approaches to obtain good localization results. In this paper, we propose a framework to improve the performance of forgery localization via implementing tampering possibility maps along with fusion based technique. In the proposed framework, we first select and improve existing forensic approaches, i.e., copy-move forgery detector and statistical feature based approach, and then improve their results to obtain tampering possibility maps

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity

    Review on local binary patterns variants as texture descriptors for copy-move forgery detection

    Get PDF
    Past decades had seen the concerned by researchers in authenticating the originality of an image as the result of advancement in computer technology. Many methods have been developed to detect image forgeries such as copy-move, splicing, resampling and et cetera. The most common type of image forgery is copy-move where the copied region is pasted on the same image. The existence of high similarity in colour and textures of both copied and pasted images caused the detection of the tampered region to be very difficult. Additionally, the existence of post-processing methods makes it more challenging. In this paper, Local Binary Pattern (LBP) variants as texture descriptors for copy-move forgery detection have been reviewed. These methods are discussed in terms of introduction and methodology in copy-move forgery detection. These methods are also compared in the discussion section. Finally, their strengths and weaknesses are summarised, and some future research directions were pointed out
    • …
    corecore