5,404 research outputs found

    Real-time support for high performance aircraft operation

    Get PDF
    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown

    $1.00 per RT #BostonMarathon #PrayForBoston: analyzing fake content on Twitter

    Get PDF
    This study found that 29% of the most viral content on Twitter during the Boston bombing crisis were rumors and fake content.AbstractOnline social media has emerged as one of the prominent channels for dissemination of information during real world events. Malicious content is posted online during events, which can result in damage, chaos and monetary losses in the real world. We analyzed one such media i.e. Twitter, for content generated during the event of Boston Marathon Blasts, that occurred on April, 15th, 2013. A lot of fake content and malicious profiles originated on Twitter network during this event. The aim of this work is to perform in-depth characterization of what factors influenced in malicious content and profiles becoming viral. Our results showed that 29% of the most viral content on Twitter, during the Boston crisis were rumors and fake content; while 51% was generic opinions and comments; and rest was true information. We found that large number of users with high social reputation and verified accounts were responsible for spreading the fake content. Next, we used regression prediction model, to verify that, overall impact of all users who propagate the fake content at a given time, can be used to estimate the growth of that content in future. Many malicious accounts were created on Twitter during the Boston event, that were later suspended by Twitter. We identified over six thousand such user profiles, we observed that the creation of such profiles surged considerably right after the blasts occurred. We identified closed community structure and star formation in the interaction network of these suspended profiles amongst themselves

    Massively parallel split-step Fourier techniques for simulating quantum systems on graphics processing units

    Get PDF
    The split-step Fourier method is a powerful technique for solving partial differential equations and simulating ultracold atomic systems of various forms. In this body of work, we focus on several variations of this method to allow for simulations of one, two, and three-dimensional quantum systems, along with several notable methods for controlling these systems. In particular, we use quantum optimal control and shortcuts to adiabaticity to study the non-adiabatic generation of superposition states in strongly correlated one-dimensional systems, analyze chaotic vortex trajectories in two dimensions by using rotation and phase imprinting methods, and create stable, threedimensional vortex structures in Bose–Einstein condensates through artificial magnetic fields generated by the evanescent field of an optical nanofiber. We also discuss algorithmic optimizations for implementing the split-step Fourier method on graphics processing units. All computational methods present in this work are demonstrated on physical systems and have been incorporated into a state-of-the-art and open-source software suite known as GPUE, which is currently the fastest quantum simulator of its kind.Okinawa Institute of Science and Technology Graduate Universit

    Trends in recurrence analysis of dynamical systems

    Get PDF
    The last decade has witnessed a number of important and exciting developments that had been achieved for improving recurrence plot-based data analysis and to widen its application potential. We will give a brief overview about important and innovative developments, such as computational improvements, alternative recurrence definitions (event-like, multiscale, heterogeneous, and spatio-temporal recurrences) and ideas for parameter selection, theoretical considerations of recurrence quantification measures, new recurrence quantifiers (e.g. for transition detection and causality detection), and correction schemes. New perspectives have recently been opened by combining recurrence plots with machine learning. We finally show open questions and perspectives for futures directions of methodical research

    Fractal analyses of some natural systems

    Get PDF
    Fractal dimensions are estimated by the box-counting method for real world data sets and for mathematical models of three natural systems. 1 he natural systems are nearshore sea wave profiles, the topography of Shei-pa National Park in Taiwan, and the normalised difference vegetation index (NDV1) image of a fresh fern. I he mathematical models which represent the natural systems utilise multi-frequency sinusoids for the sea waves, a synthetic digital elevation model constructed by the mid-point displacement method for the topography and the Iterated Function System (IFS) codes for the fern leaf. The results show that similar fractal dimensions are obtained for discrete sub-sections of the real and synthetic one-dimensional wave data, whilst different fractal dimensions are obtained for discrete sections of the real and synthetic topographical and fern data. The similarities and differences are interpreted in the context of system evolution which was introduced by Mandelbrot (1977). Finally, the results for the fern images show that use of fractal dimensions can successfully separate void and filled elements of the two-dimensional series

    Spike Spectra for Recurrences

    Get PDF
    In recurrence analysis, the τ-recurrence rate encodes the periods of the cycles of the underlying high-dimensional time series. It, thus, plays a similar role to the autocorrelation for scalar time-series in encoding temporal correlations. However, its Fourier decomposition does not have a clean interpretation. Thus, there is no satisfactory analogue to the power spectrum in recurrence analysis. We introduce a novel method to decompose the τ-recurrence rate using an over-complete basis of Dirac combs together with sparsity regularization. We show that this decomposition, the inter-spike spectrum, naturally provides an analogue to the power spectrum for recurrence analysis in the sense that it reveals the dominant periodicities of the underlying time series. We show that the inter-spike spectrum correctly identifies patterns and transitions in the underlying system in a wide variety of examples and is robust to measurement noise.German Research FoundationPeer Reviewe

    The blessing of Dimensionality : feature selection outperforms functional connectivity-based feature transformation to classify ADHD subjects from EEG patterns of phase synchronisation

    Get PDF
    Functional connectivity (FC) characterizes brain activity from a multivariate set of N brain signals by means of an NxN matrix A, whose elements estimate the dependence within each possible pair of signals. Such matrix can be used as a feature vector for (un)supervised subject classification. Yet if N is large, A is highly dimensional. Little is known on the effect that different strategies to reduce its dimensionality may have on its classification ability. Here, we apply different machine learning algorithms to classify 33 children (age [6-14 years]) into two groups (healthy controls and Attention Deficit Hyperactivity Disorder patients) using EEG FC patterns obtained from two phase synchronisation indices. We found that the classification is highly successful (around 95%) if the whole matrix A is taken into account, and the relevant features are selected using machine learning methods. However, if FC algorithms are applied instead to transform A into a lower dimensionality matrix, the classification rate drops to less than 80%. We conclude that, for the purpose of pattern classification, the relevant features should be selected among the elements of A by using appropriate machine learning algorithms
    • 

    corecore