29 research outputs found

    Towards secure message systems

    Get PDF
    Message systems, which transfer information from sender to recipient via communication networks, are indispensable to our modern society. The enormous user base of message systems and their critical role in information delivery make it the top priority to secure message systems. This dissertation focuses on securing the two most representative and dominant messages systems---e-mail and instant messaging (IM)---from two complementary aspects: defending against unwanted messages and ensuring reliable delivery of wanted messages.;To curtail unwanted messages and protect e-mail and instant messaging users, this dissertation proposes two mechanisms DBSpam and HoneyIM, which can effectively thwart e-mail spam laundering and foil malicious instant message spreading, respectively. DBSpam exploits the distinct characteristics of connection correlation and packet symmetry embedded in the behavior of spam laundering and utilizes a simple statistical method, Sequential Probability Ratio Test, to detect and break spam laundering activities inside a customer network in a timely manner. The experimental results demonstrate that DBSpam is effective in quickly and accurately capturing and suppressing e-mail spam laundering activities and is capable of coping with high speed network traffic. HoneyIM leverages the inherent characteristic of spreading of IM malware and applies the honey-pot technology to the detection of malicious instant messages. More specifically, HoneyIM uses decoy accounts in normal users\u27 contact lists as honey-pots to capture malicious messages sent by IM malware and suppresses the spread of malicious instant messages by performing network-wide blocking. The efficacy of HoneyIM has been validated through both simulations and real experiments.;To improve e-mail reliability, that is, prevent losses of wanted e-mail, this dissertation proposes a collaboration-based autonomous e-mail reputation system called CARE. CARE introduces inter-domain collaboration without central authority or third party and enables each e-mail service provider to independently build its reputation database, including frequently contacted and unacquainted sending domains, based on the local e-mail history and the information exchanged with other collaborating domains. The effectiveness of CARE on improving e-mail reliability has been validated through a number of experiments, including a comparison of two large e-mail log traces from two universities, a real experiment of DNS snooping on more than 36,000 domains, and extensive simulation experiments in a large-scale environment

    Camouflages and Token Manipulations-The Changing Faces of the Nigerian Fraudulent 419 Spammers

    Full text link
    The inefficiencies of current spam filters against fraudulent (419) mails is not unrelated to the use by spammers of good-word attacks, topic drifts, parasitic spamming, wrong categorization and recategorization of electronic mails by e-mail clients and of course the fuzzy factors of greed and gullibility on the part of the recipients who responds to fraudulent spam mail offers. In this paper, we establish that mail token manipulations remain, above any other tactics, the most potent tool used by Nigerian scammers to fool statistical spam filters. While hoping that the uncovering of these manipulative evidences will prove useful in future antispam research, our findings also sensitize spam filter developers on the need to inculcate within their antispam architecture robust modules that can deal with the identified camouflages

    Prepare for VoIP Spam

    Get PDF

    Using Malware Analysis to Evaluate Botnet Resilience

    Get PDF
    Bos, H.J. [Promotor]Steen, M.R. van [Promotor

    Security Enhancements in Voice Over Ip Networks

    Get PDF
    Voice delivery over IP networks including VoIP (Voice over IP) and VoLTE (Voice over LTE) are emerging as the alternatives to the conventional public telephony networks. With the growing number of subscribers and the global integration of 4/5G by operations, VoIP/VoLTE as the only option for voice delivery becomes an attractive target to be abused and exploited by malicious attackers. This dissertation aims to address some of the security challenges in VoIP/VoLTE. When we examine the past events to identify trends and changes in attacking strategies, we find that spam calls, caller-ID spoofing, and DoS attacks are the most imminent threats to VoIP deployments. Compared to email spam, voice spam will be much more obnoxious and time consuming nuisance for human subscribers to filter out. Since the threat of voice spam could become as serious as email spam, we first focus on spam detection and propose a content-based approach to protect telephone subscribers\u27 voice mailboxes from voice spam. Caller-ID has long been used to enable the callee parties know who is calling, verify his identity for authentication and his physical location for emergency services. VoIP and other packet switched networks such as all-IP Long Term Evolution (LTE) network provide flexibility that helps subscribers to use arbitrary caller-ID. Moreover, interconnecting between IP telephony and other Circuit-Switched (CS) legacy telephone networks has also weakened the security of caller-ID systems. We observe that the determination of true identity of a calling device helps us in preventing many VoIP attacks, such as caller-ID spoofing, spamming and call flooding attacks. This motivates us to take a very different approach to the VoIP problems and attempt to answer a fundamental question: is it possible to know the type of a device a subscriber uses to originate a call? By exploiting the impreciseness of the codec sampling rate in the caller\u27s RTP streams, we propose a fuzzy rule-based system to remotely identify calling devices. Finally, we propose a caller-ID based public key infrastructure for VoIP and VoLTE that provides signature generation at the calling party side as well as signature verification at the callee party side. The proposed signature can be used as caller-ID trust to prevent caller-ID spoofing and unsolicited calls. Our approach is based on the identity-based cryptography, and it also leverages the Domain Name System (DNS) and proxy servers in the VoIP architecture, as well as the Home Subscriber Server (HSS) and Call Session Control Function (CSCF) in the IP Multimedia Subsystem (IMS) architecture. Using OPNET, we then develop a comprehensive simulation testbed for the evaluation of our proposed infrastructure. Our simulation results show that the average call setup delays induced by our infrastructure are hardly noticeable by telephony subscribers and the extra signaling overhead is negligible. Therefore, our proposed infrastructure can be adopted to widely verify caller-ID in telephony networks

    Enhancing data privacy and security in Internet of Things through decentralized models and services

    Get PDF
    exploits a Byzantine Fault Tolerant (BFT) blockchain, in order to perform collaborative and dynamic botnet detection by collecting and auditing IoT devices\u2019 network traffic flows as blockchain transactions. Secondly, we take the challenge to decentralize IoT, and design a hybrid blockchain architecture for IoT, by proposing Hybrid-IoT. In Hybrid-IoT, subgroups of IoT devices form PoW blockchains, referred to as PoW sub-blockchains. Connection among the PoW sub-blockchains employs a BFT inter-connector framework. We focus on the PoW sub-blockchains formation, guided by a set of guidelines based on a set of dimensions, metrics and bounds

    Analysis and Defense of Emerging Malware Attacks

    Get PDF
    The persistent evolution of malware intrusion brings great challenges to current anti-malware industry. First, the traditional signature-based detection and prevention schemes produce outgrown signature databases for each end-host user and user has to install the AV tool and tolerate consuming huge amount of resources for pairwise matching. At the other side of malware analysis, the emerging malware can detect its running environment and determine whether it should infect the host or not. Hence, traditional dynamic malware analysis can no longer find the desired malicious logic if the targeted environment cannot be extracted in advance. Both these two problems uncover that current malware defense schemes are too passive and reactive to fulfill the task. The goal of this research is to develop new analysis and protection schemes for the emerging malware threats. Firstly, this dissertation performs a detailed study on recent targeted malware attacks. Based on the study, we develop a new technique to perform effectively and efficiently targeted malware analysis. Second, this dissertation studies a new trend of massive malware intrusion and proposes a new protection scheme to proactively defend malware attack. Lastly, our focus is new P2P malware. We propose a new scheme, which is named as informed active probing, for large-scale P2P malware analysis and detection. In further, our internet-wide evaluation shows our active probing scheme can successfully detect malicious P2P malware and its corresponding malicious servers
    corecore