67 research outputs found

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor

    Robustness of Image-Based Malware Analysis

    Get PDF
    In previous work, “gist descriptor” features extracted from images have been used in malware classification problems and have shown promising results. In this research, we determine whether gist descriptors are robust with respect to malware obfuscation techniques, as compared to Convolutional Neural Networks (CNN) trained directly on malware images. Using the Python Image Library (PIL), we create images from malware executables and from malware that we obfuscate. We conduct experiments to compare classifying these images with a CNN as opposed to extracting the gist descriptor features from these images to use in classification. For the gist descriptors, we consider a variety of classification algorithms including k-nearest neighbors, random forest, support vector machine, and multi-layer perceptron. We find that gist descriptors are more robust than CNNs, with respect to the obfuscation techniques that we consider

    Design and Implementation of Algorithms for Traffic Classification

    Get PDF
    Traffic analysis is the practice of using inherent characteristics of a network flow such as timings, sizes, and orderings of the packets to derive sensitive information about it. Traffic analysis techniques are used because of the extensive adoption of encryption and content-obfuscation mechanisms, making it impossible to infer any information about the flows by analyzing their content. In this thesis, we use traffic analysis to infer sensitive information for different objectives and different applications. Specifically, we investigate various applications: p2p cryptocurrencies, flow correlation, and messaging applications. Our goal is to tailor specific traffic analysis algorithms that best capture network traffic’s intrinsic characteristics in those applications for each of these applications. Also, the objective of traffic analysis is different for each of these applications. Specifically, in Bitcoin, our goal is to evaluate Bitcoin traffic’s resilience to blocking by powerful entities such as governments and ISPs. Bitcoin and similar cryptocurrencies play an important role in electronic commerce and other trust-based distributed systems because of their significant advantage over traditional currencies, including open access to global e-commerce. Therefore, it is essential to the consumers and the industry to have reliable access to their Bitcoin assets. We also examine stepping stone attacks for flow correlation. A stepping stone is a host that an attacker uses to relay her traffic to hide her identity. We introduce two fingerprinting systems, TagIt and FINN. TagIt embeds a secret fingerprint into the flows by moving the packets to specific time intervals. However, FINN utilizes DNNs to embed the fingerprint by changing the inter-packet delays (IPDs) in the flow. In messaging applications, we analyze the WhatsApp messaging service to determine if traffic leaks any sensitive information such as members’ identity in a particular conversation to the adversaries who watch their encrypted traffic. These messaging applications’ privacy is essential because these services provide an environment to dis- cuss politically sensitive subjects, making them a target to government surveillance and censorship in totalitarian countries. We take two technical approaches to design our traffic analysis techniques. The increasing use of DNN-based classifiers inspires our first direction: we train DNN classifiers to perform some specific traffic analysis task. Our second approach is to inspect and model the shape of traffic in the target application and design a statistical classifier for the expected shape of traffic. DNN- based methods are useful when the network is complex, and the traffic’s underlying noise is not linear. Also, these models do not need a meticulous analysis to extract the features. However, deep learning techniques need a vast amount of training data to work well. Therefore, they are not beneficial when there is insufficient data avail- able to train a generalized model. On the other hand, statistical methods have the advantage that they do not have training overhead
    • …
    corecore