743 research outputs found

    Detection of Atrial Fibrillation Using Decision Tree Ensemble

    Get PDF
    2017 PhysioNet/CinC Challenge proposed a global competition for classifying a short single ECG lead recording into normal sinus rhythm, atrial fibrillation (AF), alternative rhythm, and unclassified rhythm. This study developed and evaluated a pragmatic approach to solve the challenge, which was based on a decision tree ensemble with 30 features from ECG recording. The model was trained using the AdaBoost.M2 algorithm. The results reported here were obtained using 100-fold cross-validation, and the lowest MSE was 0.12 with the maximum number of splits of 55, and the number of trees of 20. The entry was tested and scored in the second phase of the challenge. The achieved scores for "Normal", "AF", "Other", were 0.93, 0.86, and 0.79, respectively, while the F1 measure was 0.86, and the official overall score was 0.82

    A Review of Atrial Fibrillation Detection Methods as a Service

    Get PDF
    Atrial Fibrillation (AF) is a common heart arrhythmia that often goes undetected, and even if it is detected, managing the condition may be challenging. In this paper, we review how the RR interval and Electrocardiogram (ECG) signals, incorporated into a monitoring system, can be useful to track AF events. Were such an automated system to be implemented, it could be used to help manage AF and thereby reduce patient morbidity and mortality. The main impetus behind the idea of developing a service is that a greater data volume analyzed can lead to better patient outcomes. Based on the literature review, which we present herein, we introduce the methods that can be used to detect AF efficiently and automatically via the RR interval and ECG signals. A cardiovascular disease monitoring service that incorporates one or multiple of these detection methods could extend event observation to all times, and could therefore become useful to establish any AF occurrence. The development of an automated and efficient method that monitors AF in real time would likely become a key component for meeting public health goals regarding the reduction of fatalities caused by the disease. Yet, at present, significant technological and regulatory obstacles remain, which prevent the development of any proposed system. Establishment of the scientific foundation for monitoring is important to provide effective service to patients and healthcare professionals

    Time series kernel similarities for predicting Paroxysmal Atrial Fibrillation from ECGs

    Get PDF
    We tackle the problem of classifying Electrocardiography (ECG) signals with the aim of predicting the onset of Paroxysmal Atrial Fibrillation (PAF). Atrial fibrillation is the most common type of arrhythmia, but in many cases PAF episodes are asymptomatic. Therefore, in order to help diagnosing PAF, it is important to design procedures for detecting and, more importantly, predicting PAF episodes. We propose a method for predicting PAF events whose first step consists of a feature extraction procedure that represents each ECG as a multi-variate time series. Successively, we design a classification framework based on kernel similarities for multi-variate time series, capable of handling missing data. We consider different approaches to perform classification in the original space of the multi-variate time series and in an embedding space, defined by the kernel similarity measure. We achieve a classification accuracy comparable with state of the art methods, with the additional advantage of detecting the PAF onset up to 15 minutes in advance

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    A novel two-stage heart arrhythmia ensemble classifier

    Get PDF
    Atrial fibrillation (AF) and ventricular arrhythmia (Arr) are among the most common and fatal cardiac arrhythmias in the world. Electrocardiogram (ECG) data, collected as part of the UK Biobank, represents an opportunity for analysis and classification of these two diseases in the UK. The main objective of our study is to investigate a two-stage model for the classification of individuals with AF and Arr in the UK Biobank dataset. The current literature addresses heart arrhythmia classification very extensively. However, the data used by most researchers lack enough instances of these common diseases. Moreover, by proposing the two-stage model and separation of normal and abnormal cases, we have improved the performance of the classifiers in detection of each specific disease. Our approach consists of two stages of classification. In the first stage, features of the ECG input are classified into two main classes: normal and abnormal. At the second stage, the features of the ECG are further categorised as abnormal and further classified into two diseases of AF and Arr. A diverse set of ECG features such as the QRS duration, PR interval and RR interval, as well as covariates such as sex, BMI, age and other factors, are used in the modelling process. For both stages, we use the XGBoost Classifier algorithm. The healthy population present in the data, has been undersampled to tackle the class imbalance present in the data. This technique has been applied and evaluated using an ECG dataset from the UKBioBank ECG taken at rest repository. The main results of our paper are as follows: The classification performance for the proposed approach has been measured using F1 score, Sensitivity (Recall) and Specificity (Precision). The results of the proposed system are 87.22%, 88.55% and 85.95%, for average F1 Score, average sensitivity and average specificity, respectively. Contribution and significance: The performance level indicates that automatic detection of AF and Arr in participants present in the UK Biobank is more precise and efficient if done in a two-stage manner. Automatic detection and classification of AF and Arr individuals this way would mean early diagnosis and prevention of more serious consequences later in their lives

    Machine learning techniques for arrhythmic risk stratification: a review of the literature

    Get PDF
    Ventricular arrhythmias (VAs) and sudden cardiac death (SCD) are significant adverse events that affect the morbidity and mortality of both the general population and patients with predisposing cardiovascular risk factors. Currently, conventional disease-specific scores are used for risk stratification purposes. However, these risk scores have several limitations, including variations among validation cohorts, the inclusion of a limited number of predictors while omitting important variables, as well as hidden relationships between predictors. Machine learning (ML) techniques are based on algorithms that describe intervariable relationships. Recent studies have implemented ML techniques to construct models for the prediction of fatal VAs. However, the application of ML study findings is limited by the absence of established frameworks for its implementation, in addition to clinicians’ unfamiliarity with ML techniques. This review, therefore, aims to provide an accessible and easy-to-understand summary of the existing evidence about the use of ML techniques in the prediction of VAs. Our findings suggest that ML algorithms improve arrhythmic prediction performance in different clinical settings. However, it should be emphasized that prospective studies comparing ML algorithms to conventional risk models are needed while a regulatory framework is required prior to their implementation in clinical practice

    Machine learning for the classification of atrial fibrillation utilizing seismo- and gyrocardiogram

    Get PDF
    A significant number of deaths worldwide are attributed to cardiovascular diseases (CVDs), accounting for approximately one-third of the total mortality in 2019, with an estimated 18 million deaths. The prevalence of CVDs has risen due to the increasing elderly population and improved life expectancy. Consequently, there is an escalating demand for higher-quality healthcare services. Technological advancements, particularly the use of wearable devices for remote patient monitoring, have significantly improved the diagnosis, treatment, and monitoring of CVDs. Atrial fibrillation (AFib), an arrhythmia associated with severe complications and potential fatality, necessitates prolonged monitoring of heart activity for accurate diagnosis and severity assessment. Remote heart monitoring, facilitated by ECG Holter monitors, has become a popular approach in many cardiology clinics. However, in the absence of an ECG Holter monitor, other remote and widely available technologies can prove valuable. The seismo- and gyrocardiogram signals (SCG and GCG) provide information about the mechanical function of the heart, enabling AFib monitoring within or outside clinical settings. SCG and GCG signals can be conveniently recorded using smartphones, which are affordable and ubiquitous in most countries. This doctoral thesis investigates the utilization of signal processing, feature engineering, and supervised machine learning techniques to classify AFib using short SCG and GCG measurements captured by smartphones. Multiple machine learning pipelines are examined, each designed to address specific objectives. The first objective (O1) involves evaluating the performance of supervised machine learning classifiers in detecting AFib using measurements conducted by physicians in a clinical setting. The second objective (O2) is similar to O1, but this time utilizing measurements taken by patients themselves. The third objective (03) explores the performance of machine learning classifiers in detecting acute decompensated heart failure (ADHF) using the same measurements as O1, which were primarily collected for AFib detection. Lastly, the fourth objective (O4) delves into the application of deep neural networks for automated feature learning and classification of AFib. These investigations have shown that AFib detection is achievable by capturing a joint SCG and GCG recording and applying machine learning methods, yielding satisfactory performance outcomes. The primary focus of the examined approaches encompassed (1) feature engineering coupled with supervised classification, and (2) iv automated end-to-end feature learning and classification using deep convolutionalrecurrent neural networks. The key finding from these studies is that SCG and GCG signals reliably capture the heart’s beating pattern, irrespective of the operator. This allows for the detection of irregular rhythm patterns, making this technology suitable for monitoring AFib episodes outside of hospital settings as a remote monitoring solution for individuals suspected to have AFib. This thesis demonstrates the potential of smartphone-based AFib detection using built-in inertial sensors. Notably, a short recording duration of 10 to 60 seconds yields clinically relevant results. However, it is important to recognize that the results for ADHF did not match the state-of-the-art achievements due to the limited availability of ADHF data combined with arrhythmias as well as the lack of a cardiopulmonary exercise test in the measurement setting. Finally, it is important to recognize that SCG and GCG are not intended to replace clinical ECG measurements or long-term ambulatory Holter ECG recordings. Instead, within the scope of our current understanding, they should be regarded as complementary and supplementary technologies for cardiovascular monitoring
    • …
    corecore