427 research outputs found

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Contrast-enhanced magnetic resonance angiography

    Full text link

    Strain ultrasound elastography of aneurysm sac content after randomized endoleak embolization with sclerosing and non-sclerosing chitosan-based hydrogels in a preclinical model

    Full text link
    Mise en contexte : La réparation endovasculaire des anévrismes de l’aorte abdominale est limitée par le développement des endofuites, qui nécessite un suivi à long terme par imagerie. L’élastographie sonore de déformation a été proposée comme méthode complémentaire pour aider à la détection des endofuites et la caractérisation des propriétés mécaniques des anévrismes. On s’intéresse ici également à la possibilité de suivre l’embolisation des endofuites, qui est indiquée dans certains cas mais dont le succès est variable. Un nouvel agent d’embolisation a été récemment créé en combinant un hydrogel de chitosane radio-opaque (CH) et le sclérosant tetradecyl sulfate de sodium (STS), qui s’appelle CH-STS. Le CH-STS démontre des propriétés mécaniques in vitro favorables, mais son comportement in vivo et son effet sur l’évolution du sac par rapport à un agent non-sclérosant pourraient être mieux caractérisés. L’objectif de cette étude était la caractérisation des propriétés mécaniques des composantes des endofuites embolisées avec CH-STS et CH avec élastographie sonore de déformation. Méthodologie : Des anévrismes bilatéraux avec endofuites de type I ont été créés au niveau des artères iliaques communes chez neuf chiens. Chez chaque sujet, une endofuite a été embolisée avec CH, et l’autre, avec CH-STS, d’une façon aléatoire et aveugle. Des images d’échographie duplex et des cinéloops pour élastographie sonore de déformation ont été acquis à 1 semaine, 1 mois, 3 mois et (chez 3 sujets) 6 mois post-embolisation. La tomodensitométrie a été faite à 3 mois et (si pertinente) 6 mois post-embolisation. L’histopathologie a été faite au sacrifice. Les études radiologiques et les données d’histopathologie ont été co-enregistrées pour définir trois régions d’intérêt sur les cinéloops : l’agent d’embolisation (au sacrifice), le thrombus intraluminal (au sacrifice) et le sac anévrismal (pendant chaque suivi). L’élastographie sonore de déformation a été faite avec les segmentations par deux observateurs indépendants. La déformation axiale maximale (DAM) a été le critère d’évaluation principal. Les analyses statistiques ont été faites avec des modèles mixtes linéaires généralisés et des coefficients de corrélations intraclasses (ICCs). Résultats : Des endofuites résiduelles ont été trouvées dans 7/9 (77.8%) et 4/9 (44.4%) des anévrismes embolisés avec CH et CH-STS, respectivement. Le CH-STS a eu une DAM 66 % plus basse (p < 0.001) que le CH. Le thrombus a eu une DAM 37% plus basse (p = 0.010) que le CH et 77% plus élevée (p = 0.079) que le CH-STS. Il n’y avait aucune différence entre les thrombi associés avec les deux traitements. Les sacs anévrismaux embolisés avec CH-STS ont eu une DAM 29% plus basse (p < 0.001) que ceux embolisés avec CH. Des endofuites résiduelles ont été associées avec une DAM du sac anévrismal 53% plus élevée (p < 0.001). Le ICC pour la DAM a été de 0.807 entre les deux segmentations. Conclusion : Le CH-STS confère des valeurs de déformations plus basses aux anévrismes embolisés. Les endofuites persistantes sont associées avec des déformations plus élevées du sac anévrismal.Background: Endovascular aneurysm repair (EVAR) is the modality of choice for the treatment of abdominal aortic aneurysms (AAAs). EVAR is limited by the development of endoleaks, which necessitate long-term imaging follow-up. Conventional follow-up modalities suffer from unique limitations. Strain ultrasound elastography (SUE) has been recently proposed as an imaging adjunct to detect endoleaks and to characterize aneurysm mechanical properties. Once detected, certain endoleaks may be treated with embolization; however, success is limited. In this context, the embolic agent CH-STS—containing a chitosan hydrogel and the sclerosant sodium tetradecyl sulphate (STS)—was created. CH-STS demonstrates favorable mechanical properties in vitro; however, its behavior in vivo and impact on sac evolution compared to a non-sclerosing chitosan-based embolic agent (CH) merit further characterization. Purpose: To compare the mechanical properties of the constituents of endoleaks embolized with CH and CH-STS—including the agent, the intraluminal thrombus (ILT), and the overall sac—via SUE. Methods: Bilateral common iliac artery aneurysms with type I endoleaks were created in nine dogs. In each animal, one endoleak was randomly embolized with CH, and the other with CH-STS. Duplex ultrasound (DUS) and radiofrequency cine loops were acquired at 1 week, 1 month, 3 months, and—in 3 subjects—6 months post-embolization. Contrast-enhanced CT was performed at 3 months and—where applicable—6 months post-embolization. Histopathological analysis was performed at time of sacrifice. Radiological studies and histopathological slides were co-registered to identify three regions of interest (ROIs) on the cine loops: embolic agent (at sacrifice), ILT (at sacrifice), and aneurysm sac (at all follow-up times). SUE was performed using segmentations from two independent observers on the cine loops. Maximum axial deformation (MAD) was the main outcome. Statistical analysis was performed using general linear mixed models and intraclass correlation coefficients (ICCs). Results: Residual endoleaks were identified in 7/9 (77.8%) and 4/9 (44.4%) aneurysms embolized with CH and CH-STS, respectively. CH-STS had a 66 % lower MAD (p < 0.001) than CH. The ILT had a 37% lower MAD (p = 0.010) than CH and a 77% greater MAD (p = 0.079; trending towards significance) than CH-STS. There was no difference in the ILT between treatment groups. Aneurysm sacs embolized with CH-STS had a 29% lower MAD (p < 0.001) than those with CH. Residual endoleak increased MAD of the aneurysm sac by 53% (p < 0.001), regardless of the agent used. The ICC for MAD was 0.807 between readers’ segmentations. Conclusion: CH-STS confers lower strain values to embolized aneurysms. Persistent endoleaks result are associated with increased sac strain, which may be useful for clinical follow-up

    Contrast-enhanced magnetic resonance angiography.

    Get PDF
    Contrast-enhanced magnetic resonance angiography (CE-MRA) is a diagnostic method for imaging of vascular structures based on nuclear magnetic resonance. Vascular enhancement is achieved by injection of a contrast medium (CM). Studies were performed using two different types of CM: conventional paramagnetic CM, and a new type of CM based on hyperpolarized (HP) nuclei. The effects of varying CM concentration with time during image acquisition were studied by means of computer simulations using two different models. It was shown that a rapid concentration variation during encoding of the central parts of k-space could result in signal loss and severe image artifacts. The results were confirmed qualitatively with phantom experiments. A postprocessing method was developed to address problems with simultaneous enhancement of arteries and veins in CE-MRA of the lower extremities. The method was based on the difference in flow-induced phase in the two vessel types. Evaluation of the method was performed with flow phantom measurements and with CE-MRA in two volunteers using standard pulse sequences. The flow-induced phase in the vessels of interest was sufficient to distinguish arteries from veins in the superior-inferior direction. Using this method, the venous enhancement could be extinguished. The possibility of using HP nuclei as CM for CE-MRA was evaluated. Signal expressions for a flow of HP CM imaged with a gradient echo sequence were derived. These signal expressions were confirmed in phantom experiments using HP 129Xe dissolved in ethanol. Studies were also performed with a new CM based on HP 13C. The CM had very long relaxation times (T1,in vivo/T2,in vivo≈ 38/1.3 s). The long relaxation times were utilized in imaging with a fully balanced steady-state free precession pulse sequence (trueFISP), where the optimal flip angle was found to be 180°. CE-MRA with the 13C-based CM in rats resulted in images with high vascular SNR (~500). CE-MRA is a useful clinical tool for diagnosing vascular disease. With the development of new contrast media, based on hyperpolarized nuclei for example, there is a potential for further improvement in the signal levels that can be achieved, enabling a standard of imaging of vessels that is not possible today

    Machine learning approaches for early prediction of hypertension.

    Get PDF
    Hypertension afflicts one in every three adults and is a leading cause of mortality in 516, 955 patients in USA. The chronic elevation of cerebral perfusion pressure (CPP) changes the cerebrovasculature of the brain and disrupts its vasoregulation mechanisms. Reported correlations between changes in smaller cerebrovascular vessels and hypertension may be used to diagnose hypertension in its early stages, 10-15 years before the appearance of symptoms such as cognitive impairment and memory loss. Specifically, recent studies hypothesized that changes in the cerebrovasculature and CPP precede the systemic elevation of blood pressure. Currently, sphygmomanometers are used to measure repeated brachial artery pressure to diagnose hypertension after its onset. However, this method cannot detect cerebrovascular alterations that lead to adverse events which may occur prior to the onset of hypertension. The early detection and quantification of these cerebral vascular structural changes could help in predicting patients who are at a high risk of developing hypertension as well as other cerebral adverse events. This may enable early medical intervention prior to the onset of hypertension, potentially mitigating vascular-initiated end-organ damage. The goal of this dissertation is to develop a novel efficient noninvasive computer-aided diagnosis (CAD) system for the early prediction of hypertension. The developed CAD system analyzes magnetic resonance angiography (MRA) data of human brains gathered over years to detect and track cerebral vascular alterations correlated with hypertension development. This CAD system can make decisions based on available data to help physicians on predicting potential hypertensive patients before the onset of the disease

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf

    Integration of anatomical and hemodynamical information in magnetic resonance angiography

    Get PDF
    +118hlm.;24c

    Inferring Geodesic Cerebrovascular Graphs: Image Processing, Topological Alignment and Biomarkers Extraction

    Get PDF
    A vectorial representation of the vascular network that embodies quantitative features - location, direction, scale, and bifurcations - has many potential neuro-vascular applications. Patient-specific models support computer-assisted surgical procedures in neurovascular interventions, while analyses on multiple subjects are essential for group-level studies on which clinical prediction and therapeutic inference ultimately depend. This first motivated the development of a variety of methods to segment the cerebrovascular system. Nonetheless, a number of limitations, ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject variability, the lack of exhaustive ground-truth, the need for operator-dependent processing pipelines, and the highly non-linear vascular domain, still make the automatic inference of the cerebrovascular topology an open problem. In this thesis, brain vessels’ topology is inferred by focusing on their connectedness. With a novel framework, the brain vasculature is recovered from 3D angiographies by solving a connectivity-optimised anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Assuming vessels joining by minimal paths, a connectivity paradigm is formulated to automatically determine the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain vascular structures are extracted with geodesic minimum spanning trees. The inferred topologies are then aligned with similar ones for labelling and propagating information over a non-linear vectorial domain, where the branching pattern of a set of vessels transcends a subject-specific quantized grid. Using a multi-source embedding of a vascular graph, the pairwise registration of topologies is performed with the state-of-the-art graph matching techniques employed in computer vision. Functional biomarkers are determined over the neurovascular graphs with two complementary approaches. Efficient approximations of blood flow and pressure drop account for autoregulation and compensation mechanisms in the whole network in presence of perturbations, using lumped-parameters analog-equivalents from clinical angiographies. Also, a localised NURBS-based parametrisation of bifurcations is introduced to model fluid-solid interactions by means of hemodynamic simulations using an isogeometric analysis framework, where both geometry and solution profile at the interface share the same homogeneous domain. Experimental results on synthetic and clinical angiographies validated the proposed formulations. Perspectives and future works are discussed for the group-wise alignment of cerebrovascular topologies over a population, towards defining cerebrovascular atlases, and for further topological optimisation strategies and risk prediction models for therapeutic inference. Most of the algorithms presented in this work are available as part of the open-source package VTrails
    • …
    corecore