15 research outputs found

    Performance Evaluation of Network Anomaly Detection Systems

    Get PDF
    Nowadays, there is a huge and growing concern about security in information and communication technology (ICT) among the scientific community because any attack or anomaly in the network can greatly affect many domains such as national security, private data storage, social welfare, economic issues, and so on. Therefore, the anomaly detection domain is a broad research area, and many different techniques and approaches for this purpose have emerged through the years. Attacks, problems, and internal failures when not detected early may badly harm an entire Network system. Thus, this thesis presents an autonomous profile-based anomaly detection system based on the statistical method Principal Component Analysis (PCADS-AD). This approach creates a network profile called Digital Signature of Network Segment using Flow Analysis (DSNSF) that denotes the predicted normal behavior of a network traffic activity through historical data analysis. That digital signature is used as a threshold for volume anomaly detection to detect disparities in the normal traffic trend. The proposed system uses seven traffic flow attributes: Bits, Packets and Number of Flows to detect problems, and Source and Destination IP addresses and Ports, to provides the network administrator necessary information to solve them. Via evaluation techniques, addition of a different anomaly detection approach, and comparisons to other methods performed in this thesis using real network traffic data, results showed good traffic prediction by the DSNSF and encouraging false alarm generation and detection accuracy on the detection schema. The observed results seek to contribute to the advance of the state of the art in methods and strategies for anomaly detection that aim to surpass some challenges that emerge from the constant growth in complexity, speed and size of today’s large scale networks, also providing high-value results for a better detection in real time.Atualmente, existe uma enorme e crescente preocupação com segurança em tecnologia da informação e comunicação (TIC) entre a comunidade científica. Isto porque qualquer ataque ou anomalia na rede pode afetar a qualidade, interoperabilidade, disponibilidade, e integridade em muitos domínios, como segurança nacional, armazenamento de dados privados, bem-estar social, questões econômicas, e assim por diante. Portanto, a deteção de anomalias é uma ampla área de pesquisa, e muitas técnicas e abordagens diferentes para esse propósito surgiram ao longo dos anos. Ataques, problemas e falhas internas quando não detetados precocemente podem prejudicar gravemente todo um sistema de rede. Assim, esta Tese apresenta um sistema autônomo de deteção de anomalias baseado em perfil utilizando o método estatístico Análise de Componentes Principais (PCADS-AD). Essa abordagem cria um perfil de rede chamado Assinatura Digital do Segmento de Rede usando Análise de Fluxos (DSNSF) que denota o comportamento normal previsto de uma atividade de tráfego de rede por meio da análise de dados históricos. Essa assinatura digital é utilizada como um limiar para deteção de anomalia de volume e identificar disparidades na tendência de tráfego normal. O sistema proposto utiliza sete atributos de fluxo de tráfego: bits, pacotes e número de fluxos para detetar problemas, além de endereços IP e portas de origem e destino para fornecer ao administrador de rede as informações necessárias para resolvê-los. Por meio da utilização de métricas de avaliação, do acrescimento de uma abordagem de deteção distinta da proposta principal e comparações com outros métodos realizados nesta tese usando dados reais de tráfego de rede, os resultados mostraram boas previsões de tráfego pelo DSNSF e resultados encorajadores quanto a geração de alarmes falsos e precisão de deteção. Com os resultados observados nesta tese, este trabalho de doutoramento busca contribuir para o avanço do estado da arte em métodos e estratégias de deteção de anomalias, visando superar alguns desafios que emergem do constante crescimento em complexidade, velocidade e tamanho das redes de grande porte da atualidade, proporcionando também alta performance. Ainda, a baixa complexidade e agilidade do sistema proposto contribuem para que possa ser aplicado a deteção em tempo real

    Incremental semi-supervised learning for anomalous trajectory detection

    Get PDF
    The acquisition of a scene-specific normal behaviour model underlies many existing approaches to the problem of automated video surveillance. Since it is unrealistic to acquire a comprehensive set of labelled behaviours for every surveyed scenario, modelling normal behaviour typically corresponds to modelling the distribution of a large collection of unlabelled examples. In general, however, it would be desirable to be able to filter an unlabelled dataset to remove potentially anomalous examples. This thesis proposes a simple semi-supervised learning framework that could allow a human operator to efficiently filter the examples used to construct a normal behaviour model by providing occasional feedback: Specifically, the classification output of the model under construction is used to filter the incoming sequence of unlabelled examples so that human approval is requested before incorporating any example classified as anomalous, while all other examples are automatically used for training. A key component of the proposed framework is an incremental one-class learning algorithm which can be trained on a sequence of normal examples while allowing new examples to be classified at any stage during training. The proposed algorithm represents an initial set of training examples with a kernel density estimate, before using merging operations to incrementally construct a Gaussian mixture model while minimising an information-theoretic cost function. This algorithm is shown to outperform an existing state-of-the-art approach without requiring off-line model selection. Throughout this thesis behaviours are considered in terms of whole motion trajectories: in order to apply the proposed algorithm, trajectories must be encoded with fixed length vectors. To determine an appropriate encoding strategy, an empirical comparison is conducted to determine the relative class-separability afforded by several different trajectory representations for a range of datasets. The results obtained suggest that the choice of representation makes a small but consistent difference to class separability, indicating that cubic B-Spline control points (fitted using least-squares regression) provide a good choice for use in subsequent experiments. The proposed semi-supervised learning framework is tested on three different real trajectory datasets. In all cases the rate of human intervention requests drops steadily, reaching a usefully low level of 1% in one case. A further experiment indicates that once a sufficient number of interventions has been provided, a high level of classification performance can be achieved even if subsequent requests are ignored. The automatic incorporation of unlabelled data is shown to improve classification performance in all cases, while a high level of classification performance is maintained even when unlabelled data containing a high proportion of anomalous examples is presented

    Applying computer analysis to detect and predict violent crime during night time economy hours

    Get PDF
    The Night-Time Economy is characterised by increased levels of drunkenness, disorderly behaviour and assault-related injury. The annual cost associated with violent incidents is approximately £14 billion, with the cost of violence with injury costing approximately 6.6 times more than violence without injury. The severity of an injury can be reduced by intervening in the incident as soon as possible. Both understanding where violence occurs and detecting incidents can result in quicker intervention through effective police resource deployment. Current systems of detection use human operators whose detection ability is poor in typical surveillance environments. This is used as motivation for the development of computer vision-based detection systems. Alternatively, a predictive model can estimate where violence is likely to occur to help law enforcement with the tactical deployment of resources. Many studies have simulated pedestrian movement through an environment to inform environmental design to minimise negative outcomes. For the main contributions of this thesis, computer vision analysis and agent-based modelling are utilised to develop methods for the detection and prediction of violent behaviour respectively. Two methods of violent behaviour detection from video data are presented. Treating violence detection as a classification task, each method reports state-of-the-art classification performance and real-time performance. The first method targets crowd violence by encoding crowd motion using temporal summaries of Grey Level Co-occurrence Matrix (GLCM) derived features. The second method, aimed at detecting one-on-one violence, operates by locating and subsequently describing regions of interest based on motion characteristics associated with violent behaviour. Justified using existing literature, the characteristics are high acceleration, non-linear movement and convergent motion. Each violence detection method is used to evaluate the intrinsic properties of violent behaviour. We demonstrate issues associated with violent behaviour datasets by showing that state-of-the-art classification is achievable by exploiting data bias, highlighting potential failure points for feature representation learning schemes. Using agent-based modelling techniques and regression analysis, we discovered that including the effects of alcohol when simulating behaviour within city centre environments produces a more accurate model for predicting violent behaviour

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    White Paper 11: Artificial intelligence, robotics & data science

    Get PDF
    198 p. : 17 cmSIC white paper on Artificial Intelligence, Robotics and Data Science sketches a preliminary roadmap for addressing current R&D challenges associated with automated and autonomous machines. More than 50 research challenges investigated all over Spain by more than 150 experts within CSIC are presented in eight chapters. Chapter One introduces key concepts and tackles the issue of the integration of knowledge (representation), reasoning and learning in the design of artificial entities. Chapter Two analyses challenges associated with the development of theories –and supporting technologies– for modelling the behaviour of autonomous agents. Specifically, it pays attention to the interplay between elements at micro level (individual autonomous agent interactions) with the macro world (the properties we seek in large and complex societies). While Chapter Three discusses the variety of data science applications currently used in all fields of science, paying particular attention to Machine Learning (ML) techniques, Chapter Four presents current development in various areas of robotics. Chapter Five explores the challenges associated with computational cognitive models. Chapter Six pays attention to the ethical, legal, economic and social challenges coming alongside the development of smart systems. Chapter Seven engages with the problem of the environmental sustainability of deploying intelligent systems at large scale. Finally, Chapter Eight deals with the complexity of ensuring the security, safety, resilience and privacy-protection of smart systems against cyber threats.18 EXECUTIVE SUMMARY ARTIFICIAL INTELLIGENCE, ROBOTICS AND DATA SCIENCE Topic Coordinators Sara Degli Esposti ( IPP-CCHS, CSIC ) and Carles Sierra ( IIIA, CSIC ) 18 CHALLENGE 1 INTEGRATING KNOWLEDGE, REASONING AND LEARNING Challenge Coordinators Felip Manyà ( IIIA, CSIC ) and Adrià Colomé ( IRI, CSIC – UPC ) 38 CHALLENGE 2 MULTIAGENT SYSTEMS Challenge Coordinators N. Osman ( IIIA, CSIC ) and D. López ( IFS, CSIC ) 54 CHALLENGE 3 MACHINE LEARNING AND DATA SCIENCE Challenge Coordinators J. J. Ramasco Sukia ( IFISC ) and L. Lloret Iglesias ( IFCA, CSIC ) 80 CHALLENGE 4 INTELLIGENT ROBOTICS Topic Coordinators G. Alenyà ( IRI, CSIC – UPC ) and J. Villagra ( CAR, CSIC ) 100 CHALLENGE 5 COMPUTATIONAL COGNITIVE MODELS Challenge Coordinators M. D. del Castillo ( CAR, CSIC) and M. Schorlemmer ( IIIA, CSIC ) 120 CHALLENGE 6 ETHICAL, LEGAL, ECONOMIC, AND SOCIAL IMPLICATIONS Challenge Coordinators P. Noriega ( IIIA, CSIC ) and T. Ausín ( IFS, CSIC ) 142 CHALLENGE 7 LOW-POWER SUSTAINABLE HARDWARE FOR AI Challenge Coordinators T. Serrano ( IMSE-CNM, CSIC – US ) and A. Oyanguren ( IFIC, CSIC - UV ) 160 CHALLENGE 8 SMART CYBERSECURITY Challenge Coordinators D. Arroyo Guardeño ( ITEFI, CSIC ) and P. Brox Jiménez ( IMSE-CNM, CSIC – US )Peer reviewe

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    COARSE ORANGE POTTERY EXCHANGE IN SOUTHERN VERACRUZ: A COMPOSITIONAL PERSPECTIVE ON CENTRALIZED CRAFT PRODUCTION AND EXCHANGE IN THE CLASSIC PERIOD

    Get PDF
    This research seeks to elucidate the role of relatively large-scale ceramic productionindustries located at the Classic period center of Matacapan in the Sierra de los Tuxtlas, SouthernVeracruz, Mexico. Arnold et al. (1993) have suggested that the specialized production atComoapan, the largest production locality at Matacapan, was oriented toward supplying theregion with ceramics. This production locality overwhelmingly specialized in manufacturingone standardized ware, Coarse Orange, into necked and neckless jars, which are found in manyparts of the region.The compositional techniques of instrumental neutron activation analysis (INAA) andpetrography were employed to investigate the distribution of this ware. Control groups weresampled from known production loci at Matacapan. The data does reveal strong evidence thatCoarse Orange was traded from Matacapan to other sites in the Tuxtlas. Comoapan was themost likely producer for this trade. Equally as important, this research yielded several differentcompositional groups, which indicates sites that either did not interact with Matacapan to procurethis ware, or who produced their own varieties of Coarse Orange. While Matacapan seems tohave had economic influence over parts of the Tuxtlas, the distribution of non-Matacapancompositional groups is useful to delineate areas of the Tuxtlas who display minimal economicinteraction with this regional center
    corecore