373 research outputs found

    Detection of Alpha-Rod Protein Repeats Using a Neural Network and Application to Huntingtin

    Get PDF
    A growing number of solved protein structures display an elongated structural domain, denoted here as alpha-rod, composed of stacked pairs of anti-parallel alpha-helices. Alpha-rods are flexible and expose a large surface, which makes them suitable for protein interaction. Although most likely originating by tandem duplication of a two-helix unit, their detection using sequence similarity between repeats is poor. Here, we show that alpha-rod repeats can be detected using a neural network. The network detects more repeats than are identified by domain databases using multiple profiles, with a low level of false positives (<10%). We identify alpha-rod repeats in approximately 0.4% of proteins in eukaryotic genomes. We then investigate the results for all human proteins, identifying alpha-rod repeats for the first time in six protein families, including proteins STAG1-3, SERAC1, and PSMD1-2 & 5. We also characterize a short version of these repeats in eight protein families of Archaeal, Bacterial, and Fungal species. Finally, we demonstrate the utility of these predictions in directing experimental work to demarcate three alpha-rods in huntingtin, a protein mutated in Huntington's disease. Using yeast two hybrid analysis and an immunoprecipitation technique, we show that the huntingtin fragments containing alpha-rods associate with each other. This is the first definition of domains in huntingtin and the first validation of predicted interactions between fragments of huntingtin, which sets up directions toward functional characterization of this protein. An implementation of the repeat detection algorithm is available as a Web server with a simple graphical output: http://www.ogic.ca/projects/ard. This can be further visualized using BiasViz, a graphic tool for representation of multiple sequence alignments

    Functional and genomic analyses of α-solenoid proteins

    Get PDF
    {alpha}-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some {alpha}-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of {alpha}-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of {alpha}-solenoids. Unexpectedly, we identified occurrences of {alpha}-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known {alpha}-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that {alpha}-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of {alpha}-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that {alpha}-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of {alpha}-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/

    Identification of binding sites in huntingtin for the huntingtin interacting proteins HIP14 and HIP14L

    Get PDF
    Huntington disease is an adult onset neurodegenerative disease characterized by motor, cognitive, and psychiatric dysfunction, caused by a CAG expansion in the HTT gene. Huntingtin Interacting Protein 14 (HIP14) and Huntingtin Interacting Protein 14-like (HIP14L) are palmitoyl acyltransferases (PATs), enzymes that mediate the post-translational addition of long chain fatty acids to proteins in a process called palmitoylation. HIP14 and HIP14L interact with and palmitoylate HTT and are unique among PATs as they are the only two that have an ankyrin repeat domain, which mediates the interaction between HIP14 and HTT. These enzymes show reduced interaction with and palmitoylation of mutant HTT, leading to increased mutant HTT inclusion formation and toxicity. The interaction between HIP14 and HTT goes beyond that of only an enzyme–substrate interaction as HTT is essential for the full enzymatic activity of HIP14. It is important to further understand and characterize the interactions of HTT with HIP14 and HIP14L to guide future efforts to target and enhance this interaction and increase enzyme activity to remediate palmitoylation of HTT and their substrates, as well as to understand the relationship between the three proteins. HIP14 and HIP14L have been previously shown to interact with HTT amino acids 1–548. Here the interaction of HIP14 and HIP14L with N- and C-terminal HTT 1–548 deletion mutations was assessed. We show that HTT amino acids 1–548 were sufficient for full interaction of HTT with HIP14 and HIP14L, but partial interaction was also possible with HTT 1–427 and HTT 224–548. To further characterize the binding domain we assessed the interaction of HIP14-GFP and HIP14L-GFP with 15Q HTT 1-548D257-315. Both enzymes showed reduced but not abolished interaction with 15Q HTT 1-548D257-315. This suggests that two potential binding domains exist, one around residues 224 and the other around 427, for the PAT enzymes HIP14 and HIP14L.Peer reviewedfinal article publishe

    Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities

    Get PDF
    Huntington disease (HD) is a neurodegenerative disease caused by CAG repeat expansion in the huntingtin gene (HTT) and involves a complex web of pathogenic mechanisms. Mutant HTT (mHTT) disrupts transcription, interferes with immune and mitochondrial function, and is aberrantly modified post-translationally. Evidence suggests that the mHTT RNA is toxic, and at the DNA level, somatic CAG repeat expansion in vulnerable cells influences the disease course. Genome-wide association studies have identified DNA repair pathways as modifiers of somatic instability and disease course in HD and other repeat expansion diseases. In animal models of HD, nucleocytoplasmic transport is disrupted and its restoration is neuroprotective. Novel cerebrospinal fluid (CSF) and plasma biomarkers are among the earliest detectable changes in individuals with premanifest HD and have the sensitivity to detect therapeutic benefit. Therapeutically, the first human trial of an HTT-lowering antisense oligonucleotide successfully, and safely, reduced the CSF concentration of mHTT in individuals with HD. A larger trial, powered to detect clinical efficacy, is underway, along with trials of other HTT-lowering approaches. In this Review, we discuss new insights into the molecular pathogenesis of HD and future therapeutic strategies, including the modulation of DNA repair and targeting the DNA mutation itself

    Identification of cellular signaling events dysregulated in Huntington’s disease.

    Get PDF
    Huntington’s disease (HD) is a fatal neurodegenerative disorder resulting from a CAG repeat expansion in the first exon of the gene encoding the Huntingtin protein (Htt) with physical, emotional, and cognitive symptoms. Current standard-of-care regimens for HD are limited to symptom-mitigating therapies with little potential for increasing the overall quality of life. As such, there is an imminent need for the development of more effective treatment options, efforts for which are enabled by a greater understanding of the molecular basis of disease initiation, progression, and pathology. Alterations in numerous signal transduction pathways in HD result from aberrant kinase signaling. Protein phosphorylation is catalyzed by a class of enzymes called kinases, the cellular complement of which is referred to as its kinome. The kinases responsible for driving the fate of phosphoproteomes are central to elucidating various complex cellular events. The interactive capacity of the phosphate group makes the phosphorylated protein versatile in communicating. The study of kinome led to the development of a high throughput screening tool, peptide arrays. The arrays were exposed to lysates from cells / tissues where in the kinases from them phosphorylate the peptide spotted on the arrays. The degree of phosphorylation is measured for each spot on the array and compared to the controls thereby determining the upregulation or downregulation of signaling pathways in response to different biological treatments or conditions. The online tools used were a data analysis pipeline, Platform for Integrated, Intelligent Kinome Analysis-2 (PIIKA 2), and pathway analysis pipeline InnateDB. The kinases regulating the significantly (de)phosphorylating peptides were predicted through an online tool NetworKIN which utilized the output from PIIKA 2. Peptide arrays were utilized to identify the dysregulated kinase signaling in a) Neural stem cells (NSC) using a previously designed array with 298 peptides b) R6/2 HD mouse model across key developmental time points using customized arrays with 1268 peptides. In an effort to investigate disease-associated changes in signal transduction activity, global patterns of kinase activity (kinome analysis) were characterized within a NSC line derived from a patient with a confirmed diagnosis of HD. As indicated by kinome analysis and independently verified by phosphorylation-specific antibodies, cytoskeletal signaling, and in particular LIMK1/cofilin/slingshot signaling, was dysregulated in HD NSC’s. GSK3β was reported as a major upstream kinase potentially activated in the HD NSCs by NetworKIN analysis, an online tool. These changes in cytoskeletal associated signaling align with differences in dendrite formation between NSCs from HD and age-/sex-matched healthy controls (HC). Dendrites in the HD NSCs were 25% shorter relative to dendrites in control NSCs. The peptide array technique was then applied to R6/2 HD mouse model using the lysates from 8 key developmental time points (Embryonic 9 and 14; at birth; weeks 3, 4, 5, 7, 10) from both sexes. The subsequent confirmation of PIIKA 2 enhanced data transformation followed by pathway analysis revealed cytoskeletal dynamics as significantly dysregulated temporally. Changes in upstream regulators ROCK2 and PAK were prominent in the embryonic time points and LIMK1/cofilin/slingshot along with profilin showed alterations in the later time points especially the 3w and 4w, when the mutant huntingtin protein (mHtt) appears in the striatum the most affected cell type in HD brain. Collectively, these data highlight the potential role of cytoskeletal dynamics in HD pathology and shows that the targeted modulation of these signaling molecules may confer therapeutic benefit

    Armadillo Motifs Involved in Vesicular Transport

    Get PDF
    Armadillo (ARM) repeat proteins function in various cellular processes including vesicular transport and membrane tethering. They contain an imperfect repeating sequence motif that forms a conserved three-dimensional structure. Recently, structural and functional insight into tethering mediated by the ARM-repeat protein p115 has been provided. Here we describe the p115 ARM-motifs for reasons of clarity and nomenclature and show that both sequence and structure are highly conserved among ARM-repeat proteins. We argue that there is no need to invoke repeat types other than ARM repeats for a proper description of the structure of the p115 globular head region. Additionally, we propose to define a new subfamily of ARM-like proteins and show lack of evidence that the ARM motifs found in p115 are present in other long coiled-coil tethering factors of the golgin family

    PDBpaint, a visualization webservice to tag protein structures with sequence annotations

    Get PDF
    SUMMARY: Protein features are often displayed along the linear sequence of amino acids that make up that protein, but in reality these features occupy a position in the folded protein's three-dimensional space. Mapping sequence features to known or predicted protein structures is useful when trying to deduce the function of those features and when evaluating sequence or structural predictions. To facilitate this goal we developed PDBpaint, a simple tool that displays protein sequence features gathered from bioinformatics resources on top of protein structures, which are displayed in an interactive window (using the Jmol Java viewer). PDBpaint can be used either with existing protein structures or with novel structures provided by the user. The current version of PDBpaint allows the visualization of annotations from Pfam, ARD (detection of HEATrepeats), UniProt, TMHMM2.0 and SignalP. Users can also add other annotations manually. Availability and Implementation: PDBpaint is accessible at http://cbdm.mdc-berlin.de/~pdbpaint. Code is available from http://sourceforge.net/projects/pdbpaint. The website was implemented in Perl, with all major browsers supported. CONTACT: [email protected]

    Huntingtin facilitates polycomb repressive complex 2

    Get PDF
    Huntington's disease (HD) is caused by expansion of the polymorphic polyglutamine segment in the huntingtin protein. Full-length huntingtin is thought to be a predominant HEAT repeat α-solenoid, implying a role as a facilitator of macromolecular complexes. Here we have investigated huntingtin's domain structure and potential intersection with epigenetic silencer polycomb repressive complex 2 (PRC2), suggested by shared embryonic deficiency phenotypes. Analysis of a set of full-length recombinant huntingtins, with different polyglutamine regions, demonstrated dramatic conformational flexibility, with an accessible hinge separating two large α-helical domains. Moreover, embryos lacking huntingtin exhibited impaired PRC2 regulation of Hox gene expression, trophoblast giant cell differentiation, paternal X chromosome inactivation and histone H3K27 tri-methylation, while full-length endogenous nuclear huntingtin in wild-type embryoid bodies (EBs) was associated with PRC2 subunits and was detected with trimethylated histone H3K27 at Hoxb9. Supporting a direct stimulatory role, full-length recombinant huntingtin significantly increased the histone H3K27 tri-methylase activity of reconstituted PRC2 in vitro, and structure–function analysis demonstrated that the polyglutamine region augmented full-length huntingtin PRC2 stimulation, both in HdhQ111 EBs and in vitro, with reconstituted PRC2. Knowledge of full-length huntingtin's α-helical organization and role as a facilitator of the multi-subunit PRC2 complex provides a novel starting point for studying PRC2 regulation, implicates this chromatin repressive complex in a neurodegenerative disorder and sets the stage for further study of huntingtin's molecular function and the impact of its modulatory polyglutamine region

    Novel cell models for the study of spinocerebellar ataxia type 7 pathogenesis and therapy in a South African patient cohort

    Get PDF
    Includes abstract.Includes bibliographical references.Spinocerebellar ataxia type 7 (SCA7) is a dominantly-inherited neurodegenerative disease, resulting from a CAG trinucleotide repeat expansion in the ataxin-7 gene. The Ataxin-7 protein is known to play a role in transcriptional regulation through association with cellular histone acetylation complexes, and several studies have highlighted the role of transcriptional dysregulation, caused by the presence of mutant Ataxin-7, in the neuronal dysfunction that precedes the onset of disease symptoms.This study aimed to establish patient-derived cell models of SCA7, for use in the investigation of pathogenesis (with particular reference to transcriptional alterations), and in the evaluation of previously-developed therapies for the disease.The high prevalence of SCA7 in the South African population, as a result of a founder effect, makes this disease particularly amenable to allele-specific RNA interference (RNAi)-based therapy. Thus, this study also evaluated the feasibility of these cell models as a vehicle to test previously-developed RNAi therapeutics, using the alteration of expression of key transcripts as a phenotypic marker. SCA7 patient and control dermal fibroblasts were reprogrammed to pluripotency by retroviral transduction. The resultant induced pluripotent stem cell (iPSC) lines were characterised with respect to endogenous markers of pluripotency, differentiation capacity and transgene silencing. These cells were then subjected to neuronal differentiation, the success of which was confirmed by the expression of early neuronal markers
    corecore