1,645 research outputs found

    Cross Hallway Detection and Indoor Localization Using Flash Laser Detection and Ranging

    Get PDF
    A flash LADAR is investigated as a source of navigation information to support cross-hallway detection and relative localization. To accomplish this, a dynamic, flexible simulation was developed that simulated the LADAR and the noise of a LADAR system. Using simulated LADAR data, algorithms were developed that were shown to be effective at detecting cross hallways in simulated ideal environments and in simulated environments with noise. Relative position was determined in the same situations. A SwissRanger SR4000 flash LADAR was then used to collect real data and to verify algorithm performance in real environments. Hallway detection was shown to be possible in all real data sets, and the relative position-finding algorithm was shown to be accurate when compared to the absolute accuracy of the LADAR. Thus, flash LADAR is concluded to be an effective source for indoor navigation information

    Computer Vision Applications for Autonomous Aerial Vehicles

    Get PDF
    Undoubtedly, unmanned aerial vehicles (UAVs) have experienced a great leap forward over the last decade. It is not surprising anymore to see a UAV being used to accomplish a certain task, which was previously carried out by humans or a former technology. The proliferation of special vision sensors, such as depth cameras, lidar sensors and thermal cameras, and major breakthroughs in computer vision and machine learning fields accelerated the advance of UAV research and technology. However, due to certain unique challenges imposed by UAVs, such as limited payload capacity, unreliable communication link with the ground stations and data safety, UAVs are compelled to perform many tasks on their onboard embedded processing units, which makes it difficult to readily implement the most advanced algorithms on UAVs. This thesis focuses on computer vision and machine learning applications for UAVs equipped with onboard embedded platforms, and presents algorithms that utilize data from multiple modalities. The presented work covers a broad spectrum of algorithms and applications for UAVs, such as indoor UAV perception, 3D understanding with deep learning, UAV localization, and structural inspection with UAVs. Visual guidance and scene understanding without relying on pre-installed tags or markers is the desired approach for fully autonomous navigation of UAVs in conjunction with the global positioning systems (GPS), or especially when GPS information is either unavailable or unreliable. Thus, semantic and geometric understanding of the surroundings become vital to utilize vision as guidance in the autonomous navigation pipelines. In this context, first, robust altitude measurement, safe landing zone detection and doorway detection methods are presented for autonomous UAVs operating indoors. These approaches are implemented on Google Project Tango platform, which is an embedded platform equipped with various sensors including a depth camera. Next, a modified capsule network for 3D object classification is presented with weight optimization so that the network can be fit and run on memory-constrained platforms. Then, a semantic segmentation method for 3D point clouds is developed for a more general visual perception on a UAV equipped with a 3D vision sensor. Next, this thesis presents algorithms for structural health monitoring applications involving UAVs. First, a 3D point cloud-based, drift-free and lightweight localization method is presented for depth camera-equipped UAVs that perform bridge inspection, where GPS signal is unreliable. Next, a thermal leakage detection algorithm is presented for detecting thermal anomalies on building envelopes using aerial thermography from UAVs. Then, building on our thermal anomaly identification expertise gained on the previous task, a novel performance anomaly identification metric (AIM) is presented for more reliable performance evaluation of thermal anomaly identification methods

    Three-Dimensional Reconstruction and Modeling Using Low-Precision Vision Sensors for Automation and Robotics Applications in Construction

    Full text link
    Automation and robotics in construction (ARC) has the potential to assist in the performance of several mundane, repetitive, or dangerous construction tasks autonomously or under the supervision of human workers, and perform effective site and resource monitoring to stimulate productivity growth and facilitate safety management. When using ARC technologies, three-dimensional (3D) reconstruction is a primary requirement for perceiving and modeling the environment to generate 3D workplace models for various applications. Previous work in ARC has predominantly utilized 3D data captured from high-fidelity and expensive laser scanners for data collection and processing while paying little attention of 3D reconstruction and modeling using low-precision vision sensors, particularly for indoor ARC applications. This dissertation explores 3D reconstruction and modeling for ARC applications using low-precision vision sensors for both outdoor and indoor applications. First, to handle occlusion for cluttered environments, a joint point cloud completion and surface relation inference framework using red-green-blue and depth (RGB-D) sensors (e.g., Microsoft® Kinect) is proposed to obtain complete 3D models and the surface relations. Then, to explore the integration of prior domain knowledge, a user-guided dimensional analysis method using RGB-D sensors is designed to interactively obtain dimensional information for indoor building environments. In order to allow deployed ARC systems to be aware of or monitor humans in the environment, a real-time human tracking method using a single RGB-D sensor is designed to track specific individuals under various illumination conditions in work environments. Finally, this research also investigates the utilization of aerially collected video images for modeling ongoing excavations and automated geotechnical hazards detection and monitoring. The efficacy of the researched methods has been evaluated and validated through several experiments. Specifically, the joint point cloud completion and surface relation inference method is demonstrated to be able to recover all surface connectivity relations, double the point cloud size by adding points of which more than 87% are correct, and thus create high-quality complete 3D models of the work environment. The user-guided dimensional analysis method can provide legitimate user guidance for obtaining dimensions of interest. The average relative errors for the example scenes are less than 7% while the absolute errors less than 36mm. The designed human worker tracking method can successfully track a specific individual in real-time with high detection accuracy. The excavation slope stability monitoring framework allows convenient data collection and efficient data processing for real-time job site monitoring. The designed geotechnical hazard detection and mapping methods enable automated identification of landslides using only aerial video images collected using drones.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138626/1/yongxiao_1.pd

    Perception of Unstructured Environments for Autonomous Off-Road Vehicles

    Get PDF
    Autonome Fahrzeuge benötigen die Fähigkeit zur Perzeption als eine notwendige Voraussetzung für eine kontrollierbare und sichere Interaktion, um ihre Umgebung wahrzunehmen und zu verstehen. Perzeption für strukturierte Innen- und Außenumgebungen deckt wirtschaftlich lukrative Bereiche, wie den autonomen Personentransport oder die Industrierobotik ab, während die Perzeption unstrukturierter Umgebungen im Forschungsfeld der Umgebungswahrnehmung stark unterrepräsentiert ist. Die analysierten unstrukturierten Umgebungen stellen eine besondere Herausforderung dar, da die vorhandenen, natürlichen und gewachsenen Geometrien meist keine homogene Struktur aufweisen und ähnliche Texturen sowie schwer zu trennende Objekte dominieren. Dies erschwert die Erfassung dieser Umgebungen und deren Interpretation, sodass Perzeptionsmethoden speziell für diesen Anwendungsbereich konzipiert und optimiert werden müssen. In dieser Dissertation werden neuartige und optimierte Perzeptionsmethoden für unstrukturierte Umgebungen vorgeschlagen und in einer ganzheitlichen, dreistufigen Pipeline für autonome Geländefahrzeuge kombiniert: Low-Level-, Mid-Level- und High-Level-Perzeption. Die vorgeschlagenen klassischen Methoden und maschinellen Lernmethoden (ML) zur Perzeption bzw.~Wahrnehmung ergänzen sich gegenseitig. Darüber hinaus ermöglicht die Kombination von Perzeptions- und Validierungsmethoden für jede Ebene eine zuverlässige Wahrnehmung der möglicherweise unbekannten Umgebung, wobei lose und eng gekoppelte Validierungsmethoden kombiniert werden, um eine ausreichende, aber flexible Bewertung der vorgeschlagenen Perzeptionsmethoden zu gewährleisten. Alle Methoden wurden als einzelne Module innerhalb der in dieser Arbeit vorgeschlagenen Perzeptions- und Validierungspipeline entwickelt, und ihre flexible Kombination ermöglicht verschiedene Pipelinedesigns für eine Vielzahl von Geländefahrzeugen und Anwendungsfällen je nach Bedarf. Low-Level-Perzeption gewährleistet eine eng gekoppelte Konfidenzbewertung für rohe 2D- und 3D-Sensordaten, um Sensorausfälle zu erkennen und eine ausreichende Genauigkeit der Sensordaten zu gewährleisten. Darüber hinaus werden neuartige Kalibrierungs- und Registrierungsansätze für Multisensorsysteme in der Perzeption vorgestellt, welche lediglich die Struktur der Umgebung nutzen, um die erfassten Sensordaten zu registrieren: ein halbautomatischer Registrierungsansatz zur Registrierung mehrerer 3D~Light Detection and Ranging (LiDAR) Sensoren und ein vertrauensbasiertes Framework, welches verschiedene Registrierungsmethoden kombiniert und die Registrierung verschiedener Sensoren mit unterschiedlichen Messprinzipien ermöglicht. Dabei validiert die Kombination mehrerer Registrierungsmethoden die Registrierungsergebnisse in einer eng gekoppelten Weise. Mid-Level-Perzeption ermöglicht die 3D-Rekonstruktion unstrukturierter Umgebungen mit zwei Verfahren zur Schätzung der Disparität von Stereobildern: ein klassisches, korrelationsbasiertes Verfahren für Hyperspektralbilder, welches eine begrenzte Menge an Test- und Validierungsdaten erfordert, und ein zweites Verfahren, welches die Disparität aus Graustufenbildern mit neuronalen Faltungsnetzen (CNNs) schätzt. Neuartige Disparitätsfehlermetriken und eine Evaluierungs-Toolbox für die 3D-Rekonstruktion von Stereobildern ergänzen die vorgeschlagenen Methoden zur Disparitätsschätzung aus Stereobildern und ermöglichen deren lose gekoppelte Validierung. High-Level-Perzeption konzentriert sich auf die Interpretation von einzelnen 3D-Punktwolken zur Befahrbarkeitsanalyse, Objekterkennung und Hindernisvermeidung. Eine Domänentransferanalyse für State-of-the-art-Methoden zur semantischen 3D-Segmentierung liefert Empfehlungen für eine möglichst exakte Segmentierung in neuen Zieldomänen ohne eine Generierung neuer Trainingsdaten. Der vorgestellte Trainingsansatz für 3D-Segmentierungsverfahren mit CNNs kann die benötigte Menge an Trainingsdaten weiter reduzieren. Methoden zur Erklärbarkeit künstlicher Intelligenz vor und nach der Modellierung ermöglichen eine lose gekoppelte Validierung der vorgeschlagenen High-Level-Methoden mit Datensatzbewertung und modellunabhängigen Erklärungen für CNN-Vorhersagen. Altlastensanierung und Militärlogistik sind die beiden Hauptanwendungsfälle in unstrukturierten Umgebungen, welche in dieser Arbeit behandelt werden. Diese Anwendungsszenarien zeigen auch, wie die Lücke zwischen der Entwicklung einzelner Methoden und ihrer Integration in die Verarbeitungskette für autonome Geländefahrzeuge mit Lokalisierung, Kartierung, Planung und Steuerung geschlossen werden kann. Zusammenfassend lässt sich sagen, dass die vorgeschlagene Pipeline flexible Perzeptionslösungen für autonome Geländefahrzeuge bietet und die begleitende Validierung eine exakte und vertrauenswürdige Perzeption unstrukturierter Umgebungen gewährleistet

    Map-Based Localization for Unmanned Aerial Vehicle Navigation

    Get PDF
    Unmanned Aerial Vehicles (UAVs) require precise pose estimation when navigating in indoor and GNSS-denied / GNSS-degraded outdoor environments. The possibility of crashing in these environments is high, as spaces are confined, with many moving obstacles. There are many solutions for localization in GNSS-denied environments, and many different technologies are used. Common solutions involve setting up or using existing infrastructure, such as beacons, Wi-Fi, or surveyed targets. These solutions were avoided because the cost should be proportional to the number of users, not the coverage area. Heavy and expensive sensors, for example a high-end IMU, were also avoided. Given these requirements, a camera-based localization solution was selected for the sensor pose estimation. Several camera-based localization approaches were investigated. Map-based localization methods were shown to be the most efficient because they close loops using a pre-existing map, thus the amount of data and the amount of time spent collecting data are reduced as there is no need to re-observe the same areas multiple times. This dissertation proposes a solution to address the task of fully localizing a monocular camera onboard a UAV with respect to a known environment (i.e., it is assumed that a 3D model of the environment is available) for the purpose of navigation for UAVs in structured environments. Incremental map-based localization involves tracking a map through an image sequence. When the map is a 3D model, this task is referred to as model-based tracking. A by-product of the tracker is the relative 3D pose (position and orientation) between the camera and the object being tracked. State-of-the-art solutions advocate that tracking geometry is more robust than tracking image texture because edges are more invariant to changes in object appearance and lighting. However, model-based trackers have been limited to tracking small simple objects in small environments. An assessment was performed in tracking larger, more complex building models, in larger environments. A state-of-the art model-based tracker called ViSP (Visual Servoing Platform) was applied in tracking outdoor and indoor buildings using a UAVs low-cost camera. The assessment revealed weaknesses at large scales. Specifically, ViSP failed when tracking was lost, and needed to be manually re-initialized. Failure occurred when there was a lack of model features in the cameras field of view, and because of rapid camera motion. Experiments revealed that ViSP achieved positional accuracies similar to single point positioning solutions obtained from single-frequency (L1) GPS observations standard deviations around 10 metres. These errors were considered to be large, considering the geometric accuracy of the 3D model used in the experiments was 10 to 40 cm. The first contribution of this dissertation proposes to increase the performance of the localization system by combining ViSP with map-building incremental localization, also referred to as simultaneous localization and mapping (SLAM). Experimental results in both indoor and outdoor environments show sub-metre positional accuracies were achieved, while reducing the number of tracking losses throughout the image sequence. It is shown that by integrating model-based tracking with SLAM, not only does SLAM improve model tracking performance, but the model-based tracker alleviates the computational expense of SLAMs loop closing procedure to improve runtime performance. Experiments also revealed that ViSP was unable to handle occlusions when a complete 3D building model was used, resulting in large errors in its pose estimates. The second contribution of this dissertation is a novel map-based incremental localization algorithm that improves tracking performance, and increases pose estimation accuracies from ViSP. The novelty of this algorithm is the implementation of an efficient matching process that identifies corresponding linear features from the UAVs RGB image data and a large, complex, and untextured 3D model. The proposed model-based tracker improved positional accuracies from 10 m (obtained with ViSP) to 46 cm in outdoor environments, and improved from an unattainable result using VISP to 2 cm positional accuracies in large indoor environments. The main disadvantage of any incremental algorithm is that it requires the camera pose of the first frame. Initialization is often a manual process. The third contribution of this dissertation is a map-based absolute localization algorithm that automatically estimates the camera pose when no prior pose information is available. The method benefits from vertical line matching to accomplish a registration procedure of the reference model views with a set of initial input images via geometric hashing. Results demonstrate that sub-metre positional accuracies were achieved and a proposed enhancement of conventional geometric hashing produced more correct matches - 75% of the correct matches were identified, compared to 11%. Further the number of incorrect matches was reduced by 80%

    Vision Sensors and Edge Detection

    Get PDF
    Vision Sensors and Edge Detection book reflects a selection of recent developments within the area of vision sensors and edge detection. There are two sections in this book. The first section presents vision sensors with applications to panoramic vision sensors, wireless vision sensors, and automated vision sensor inspection, and the second one shows image processing techniques, such as, image measurements, image transformations, filtering, and parallel computing

    Motorcycles that see: Multifocal stereo vision sensor for advanced safety systems in tilting vehicles

    Get PDF
    Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications

    Utilization and experimental evaluation of occlusion aware kernel correlation filter tracker using RGB-D

    Get PDF
    Unlike deep-learning which requires large training datasets, correlation filter-based trackers like Kernelized Correlation Filter (KCF) uses implicit properties of tracked images (circulant matrices) for training in real-time. Despite their practical application in tracking, a need for a better understanding of the fundamentals associated with KCF in terms of theoretically, mathematically, and experimentally exists. This thesis first details the workings prototype of the tracker and investigates its effectiveness in real-time applications and supporting visualizations. We further address some of the drawbacks of the tracker in cases of occlusions, scale changes, object rotation, out-of-view and model drift with our novel RGB-D Kernel Correlation tracker. We also study the use of particle filter to improve trackers\u27 accuracy. Our results are experimentally evaluated using a) standard dataset and b) real-time using Microsoft Kinect V2 sensor. We believe this work will set the basis for better understanding the effectiveness of kernel-based correlation filter trackers and to further define some of its possible advantages in tracking
    • …
    corecore