27 research outputs found

    Semi-Automation in Video Editing

    Get PDF
    Semi-automasjon i video redigering Hvordan kan vi bruke kunstig intelligens (KI) og maskin læring til å gjøre videoredigering like enkelt som å redigere tekst? I denne avhandlingen vil jeg adressere problemet med å bruke KI i videoredigering fra et Menneskelig-KI interaksjons perspektiv, med fokus på å bruke KI til å støtte brukerne. Video er et audiovisuelt medium. Redigere videoer krever synkronisering av både det visuelle og det auditive med presise operasjoner helt ned på millisekund nivå. Å gjøre dette like enkelt som å redigere tekst er kanskje ikke mulig i dag. Men hvordan skal vi da støtte brukerne med KI og hva er utfordringene med å gjøre det? Det er fem hovedspørsmål som har drevet forskningen i denne avhandlingen. Hva er dagens "state-of-the-art" i KI støttet videoredigering? Hva er behovene og forventningene av fagfolkene om KI? Hva er påvirkningen KI har på effektiviteten og nøyaktigheten når det blir brukt på teksting? Hva er endringene i brukeropplevelsen når det blir brukt KI støttet teksting? Hvordan kan flere KI metoder bli brukt for å støtte beskjærings- og panoreringsoppgaver? Den første artikkelen av denne avhandlingen ga en syntese og kritisk gjennomgang av eksisterende arbeid med KI-baserte verktøy for videoredigering. Artikkelen ga også noen svar på hvordan og hva KI kan bli brukt til for å støtte brukere ved en undersøkelse utført av 14 fagfolk. Den andre studien presenterte en prototype av KI-støttet videoredigerings verktøy bygget på et eksisterende videoproduksjons program. I tillegg kom det en evaluasjon av både ytelse og brukeropplevelse på en KI-støttet teksting fra 24 nybegynnere. Den tredje studien beskrev et idiom-basert verktøy for å konvertere bredskjermsvideoer lagd for TV til smalere størrelsesforhold for mobil og sosiale medieplattformer. Den tredje studien utforsker også nye metoder for å utøve beskjæring og panorering ved å bruke fem forskjellige KI-modeller. Det ble også presentert en evaluering fra fem brukere. I denne avhandlingen brukte vi en brukeropplevelse og oppgave basert framgangsmåte, for å adressere det semi-automatiske i videoredigering.How can we use artificial intelligence (AI) and machine learning (ML) to make video editing as easy as "editing text''? In this thesis, this problem of using AI to support video editing is explored from the human--AI interaction perspective, with the emphasis on using AI to support users. Video is a dual-track medium with audio and visual tracks. Editing videos requires synchronization of these two tracks and precise operations at milliseconds. Making it as easy as editing text might not be currently possible. Then how should we support the users with AI, and what are the current challenges in doing so? There are five key questions that drove the research in this thesis. What is the start of the art in using AI to support video editing? What are the needs and expectations of video professionals from AI? What are the impacts on efficiency and accuracy of subtitles when AI is used to support subtitling? What are the changes in user experience brought on by AI-assisted subtitling? How can multiple AI methods be used to support cropping and panning task? In this thesis, we employed a user experience focused and task-based approach to address the semi-automation in video editing. The first paper of this thesis provided a synthesis and critical review of the existing work on AI-based tools for videos editing and provided some answers to how should and what more AI can be used in supporting users by a survey of 14 video professional. The second paper presented a prototype of AI-assisted subtitling built on a production grade video editing software. It is the first comparative evaluation of both performance and user experience of AI-assisted subtitling with 24 novice users. The third work described an idiom-based tool for converting wide screen videos made for television to narrower aspect ratios for mobile social media platforms. It explores a new method to perform cropping and panning using five AI models, and an evaluation with 5 users and a review with a professional video editor were presented.Doktorgradsavhandlin

    Adaptation of Images and Videos for Different Screen Sizes

    Full text link
    With the increasing popularity of smartphones and similar mobile devices, the demand for media to consume on the go rises. As most images and videos today are captured with HD or even higher resolutions, there is a need to adapt them in a content-aware fashion before they can be watched comfortably on screens with small sizes and varying aspect ratios. This process is called retargeting. Most distortions during this process are caused by a change of the aspect ratio. Thus, retargeting mainly focuses on adapting the aspect ratio of a video while the rest can be scaled uniformly. The main objective of this dissertation is to contribute to the modern image and video retargeting, especially regarding the potential of the seam carving operator. There are still unsolved problems in this research field that should be addressed in order to improve the quality of the results or speed up the performance of the retargeting process. This dissertation presents novel algorithms that are able to retarget images, videos and stereoscopic videos while dealing with problems like the preservation of straight lines or the reduction of the required memory space and computation time. Additionally, a GPU implementation is used to achieve the retargeting of videos in real-time. Furthermore, an enhancement of face detection is presented which is able to distinguish between faces that are important for the retargeting and faces that are not. Results show that the developed techniques are suitable for the desired scenarios

    Automatic Mobile Video Remixing and Collaborative Watching Systems

    Get PDF
    In the thesis, the implications of combining collaboration with automation for remix creation are analyzed. We first present a sensor-enhanced Automatic Video Remixing System (AVRS), which intelligently processes mobile videos in combination with mobile device sensor information. The sensor-enhanced AVRS system involves certain architectural choices, which meet the key system requirements (leverage user generated content, use sensor information, reduce end user burden), and user experience requirements. Architecture adaptations are required to improve certain key performance parameters. In addition, certain operating parameters need to be constrained, for real world deployment feasibility. Subsequently, sensor-less cloud based AVRS and low footprint sensorless AVRS approaches are presented. The three approaches exemplify the importance of operating parameter tradeoffs for system design. The approaches cover a wide spectrum, ranging from a multimodal multi-user client-server system (sensor-enhanced AVRS) to a mobile application which can automatically generate a multi-camera remix experience from a single video. Next, we present the findings from the four user studies involving 77 users related to automatic mobile video remixing. The goal was to validate selected system design goals, provide insights for additional features and identify the challenges and bottlenecks. Topics studied include the role of automation, the value of a video remix as an event memorabilia, the requirements for different types of events and the perceived user value from creating multi-camera remix from a single video. System design implications derived from the user studies are presented. Subsequently, sport summarization, which is a specific form of remix creation is analyzed. In particular, the role of content capture method is analyzed with two complementary approaches. The first approach performs saliency detection in casually captured mobile videos; in contrast, the second one creates multi-camera summaries from role based captured content. Furthermore, a method for interactive customization of summary is presented. Next, the discussion is extended to include the role of users’ situational context and the consumed content in facilitating collaborative watching experience. Mobile based collaborative watching architectures are described, which facilitate a common shared context between the participants. The concept of movable multimedia is introduced to highlight the multidevice environment of current day users. The thesis presents results which have been derived from end-to-end system prototypes tested in real world conditions and corroborated with extensive user impact evaluation

    Adaptation of web pages and images for mobile applications

    Full text link

    Computational Media Aesthetics for Media Synthesis

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Visual attention retargeting

    Get PDF
    This thesis explores attention retargeting---a concept related to visual saliency where the content or composition of an image is altered in an effort to guide the viewer\u27s attention. Attention retargeting is currently in its infancy with numerous unexplored possibilities, no common methodology for evaluating performance, and no unified framework. The difficulty of attention retargeting as a saliency inversion problem lies in the lack of one-to-one mapping between saliency and the image domain, in addition to the possible negative impact of saliency alterations on image naturalness. Several approaches from recent literature to solve this challenging problem are reviewed in this context. Two novel attention retargeting methods are proposed to efficiently compute a region\u27s propensity for drawing attention after it has been modified. The first method manipulates the orientation of a selected region, while the second modifies its hue. Both methods are applied to maximize the saliency of selected regions in various images. The likelihood of drawing attention towards the modified regions is evaluated through eye-tracking. Subjective experiments, in which participants are told to decide which image looks better between two alternatives, are used to measure the relative naturalness of the modification. An experiment was conducted to determine whether subliminal flicker is capable of drawing attention in natural images without the viewer\u27s knowledge. Flicker was introduced to selected regions in a set of images by alternating the contrast in these regions from high to low at a frequency of 50 Hz. A comparison of eye-tracking data between participants who viewed the flickering images against those who viewed the original images suggests that subliminal flicker may, on average, repel attention rather than attract it

    Bidirectional long short-term memory network for proto-object representation

    Full text link
    Researchers have developed many visual saliency models in order to advance the technology in computer vision. Neural networks, Convolution Neural Networks (CNNs) in particular, have successfully differentiate objects in images through feature extraction. Meanwhile, Cummings et al. has proposed a proto-object image saliency (POIS) model that shows perceptual objects or shapes can be modelled through the bottom-up saliency algorithm. Inspired from their work, this research is aimed to explore the imbedding features in the proto-object representations and utilizing artificial neural networks (ANN) to capture and predict the saliency output of POIS. A combination of CNN and a bi-directional long short-term memory (BLSTM) neural network is proposed for this saliency model as a machine learning alternative to the border ownership and grouping mechanism in POIS. As ANNs become more efficient in performing visual saliency tasks, the result of this work would extend their application in computer vision through successful implementation for proto-object based saliency

    A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos

    Get PDF
    Although research on detection of saliency and visual attention has been active over recent years, most of the existing work focuses on still image rather than video based saliency. In this paper, a deep learning based hybrid spatiotemporal saliency feature extraction framework is proposed for saliency detection from video footages. The deep learning model is used for the extraction of high-level features from raw video data, and they are then integrated with other high-level features. The deep learning network has been found extremely effective for extracting hidden features than that of conventional handcrafted methodology. The effectiveness for using hybrid high-level features for saliency detection in video is demonstrated in this work. Rather than using only one static image, the proposed deep learning model take several consecutive frames as input and both the spatial and temporal characteristics are considered when computing saliency maps. The efficacy of the proposed hybrid feature framework is evaluated by five databases with human gaze complex scenes. Experimental results show that the proposed model outperforms five other state-of-the-art video saliency detection approaches. In addition, the proposed framework is found useful for other video content based applications such as video highlights. As a result, a large movie clip dataset together with labeled video highlights is generated
    corecore