1,296 research outputs found

    A portable EIT system for emergency medical care

    Get PDF
    Electrical Impedance Tomography (EIT) is a medical imaging technique in which images of tissue conductivity within a body can be inferred from surface electrode measurements. The main goal of this study is to develop a portable EIT system incorporating an optimized electrode layout to detect intracranial haematomas for use in emergency care. A growing haematoma can cause severe and even permanent damage to the delicate tissue of the brain, morbidity, and eventual death of the patient. No capability is at present available for the diagnosis of haematomas pre-hospitalisation or by first-responders. The lack of this crucial information can lead to bad decisions on patient management, and in particular, where to send the patient. Blood has a high electrical conductivity contrast relative to other cranial tissue and can be detected and monitored using electrical impedance methods. EIT is a non-invasive, low-cost monitoring alternative to other imaging modalities, and has the potential to detect bleeding and to localize the approximate bleeding site. A device of this nature would reduce treatment delays, save on costs and waste, and most significantly, positively impact patient outcomes. The first step was a numerical simulation study on FE models. The full array and the hemi-array electrode layouts were modelled and the anomalies were simulated in different positions with different sizes. The results were obtained using TSVD and WMNM reconstruction methods by COMSOL linked with MATLAB. The simulated anomalies were detected for all the positions using both layouts; however those from the full array were in general superior to the hemi-array. In order to perform realistic experiments, a prototype EIT system was constructed in the laboratory. The constructed EIT has 16 channels and operates in the frequency range of 10 kHz to 100 kHz with a temporal resolution of 100 frames per second and high level of accuracy of 93.5 %. The minimum number of 8 electrodes was chosen in this study for emergency care. Minimizing the number of electrodes speeds up the electrode setup process and avoids the need to move the patient s head in emergency care. In the second part of this study, phantom experiments were performed to find an optimised electrode layout for emergency care. The full array and the hemi-array were investigated using phantom experiments. As expected, the full array layout had the best performance in general; however, the performance of the hemi-array layout was very poor. Thus a novel optimised electrode layout (semi-array) for emergency care was proposed and evaluated in phantom experiments. For the hemi-array and the semi-array layouts, measurement sensitivity depends strongly on the anomaly location since the electrodes are not placed all over the head. The HA layout performed very badly, with the best radial localization error of 0.8100 mm, compared to the SA layout with the worst error of 0.2486 mm. Some reconstructed anomalies located far from the electrodes in the posterior region were almost invisible or erroneous for the hemi-array layout; however, it is enhanced by using the semi-array layout. Finally, in vitro experiments were conducted on ovine models. In most of the experiments carried out by other researchers, since the location of the simulated anomalies was not known and the simulated blood was normally injected into the body or the head, localization of the anomalies was not considered and the quantity of the injected blood was investigated solely. In our new method of experiment, the position of the anomalies was known a priori and thus could be compared accurately to the EIT results. The full array and the semi-array layouts were compared in terms of detection, localisation and size estimation of haematomas. As expected, the full array layout was found to be more robust than the semi-array layout with the best mean value of the localization error of 0.0564 mm and the worst QI error of around 30%. Using a minimum number of electrodes in an optimised layout is always desirable in clinical applications. The semi-array 8-electrode layout prevents unnecessary movements and the electrode connections to the head would be very quick in emergency care. Although the semi-array 8-electrode layout reduced the sensitivity of the measurements, the findings from the experiments indicated its potential to detect and monitor haematomas and probably extend its application for emergency applications where the required accuracy is not critical

    Non-ionizing radiofrequency electromagnetic waves traversing the head can be used to detect cerebrovascular autoregulation responses

    Get PDF
    Monitoring changes in non-ionizing radiofrequency electromagnetic waves as they traverse the brain can detect the effects of stimuli employed in cerebrovascular autoregulation (CVA) tests on the brain, without contact and in real time. CVA is a physiological phenomenon of importance to health, used for diagnosis of a number of diseases of the brain with a vascular component. The technology described here is being developed for use in diagnosis of injuries and diseases of the brain in rural and economically underdeveloped parts of the world. A group of nine subjects participated in this pilot clinical evaluation of the technology. Substantial research remains to be done on correlating the measurements with physiology and anatomy

    Effect of individualized positive end-expiratory pressure based on electrical impedance tomography guidance on pulmonary ventilation distribution in patients who receive abdominal thermal perfusion chemotherapy

    Get PDF
    BackgroundElectrical impedance tomography (EIT) has been shown to be useful in guiding individual positive end-expiratory pressure titration for patients with mechanical ventilation. However, the appropriate positive end-expiratory pressure (PEEP) level and whether the individualized PEEP needs to be adjusted during long-term surgery (>6 h) were unknown. Meanwhile, the effect of individualized PEEP on the distribution of pulmonary ventilation in patients who receive abdominal thermoperfusion chemotherapy is unknown. The primary aim of this study was to observe the effect of EIT-guided PEEP on the distribution of pulmonary ventilation in patients undergoing cytoreductive surgery (CRS) combined with hot intraperitoneal chemotherapy (HIPEC). The secondary aim was to analyze their effect on postoperative pulmonary complications.MethodsA total of 48 patients were recruited and randomly divided into two groups, with 24 patients in each group. For the control group (group A), PEEP was set at 5 cm H2O, while in the EIT group (group B), individual PEEP was titrated and adjusted every 2 h with EIT guidance. Ventilation distribution, respiratory/circulation parameters, and PPC incidence were compared between the two groups.ResultsThe average individualized PEEP was 10.3 ± 1.5 cm H2O, 10.2 ± 1.6 cm H2O, 10.1 ± 1.8 cm H2O, and 9.7 ± 2.1 cm H2O at 5 min, 2 h, 4 h, and 6 h after tracheal intubation during CRS + HIPEC. Individualized PEEP was correlated with ventilation distribution in the regions of interest (ROI) 1 and ROI 3 at 4 h mechanical ventilation and ROI 1 at 6 h mechanical ventilation. The ventilation distribution under individualized PEEP was back-shifted for 6 h but moved to the control group’s ventral side under PEEP 5 cm H2O. The respiratory and circulatory function indicators were both acceptable either under individualized PEEP or PEEP 5 cm H2O. The incidence of total PPCs was significantly lower under individualized PEEP (66.7%) than PEEP 5 cm H2O (37.5%) for patients with CRS + HIPEC.ConclusionThe appropriate individualized PEEP was stable at approximately 10 cm H2O during 6 h for patients with CRS + HIPEC, along with better ventilation distribution and a lower total PPC incidence than the fixed PEEP of 5 cm H2O.Clinical trial registration: identifier ChiCTR1900023897

    Tecniche Elettrotomografiche per la caratterizzazione dei tessuti biologici

    Get PDF
    Electrical impedance tomography (EIT) is an imaging modality wherein the spatial map of conductivity and permittivity inside a medium is obtained from a set of surface electrical measurements. Electrodes are brought into contact with the surface of the object being imaged and a set of currents are applied and the corresponding voltages are measured. These voltages and currents are then used to estimate the electrical properties of the object using an image reconstruction algorithm which relies on an accurate model of the electrical interaction. The process of property estimation, called inverse problem, is highly ill-posed and it requires a Regularization method. The objective of this Thesis was to develop a device for imaging using the EIT technique, which was convenient, noninvasive, easily programmable, portable and relatively cheap in contrast to many other diagnostic tool. In this direction a simple EIT system and its hardware and software parts are developed. The data processing was accomplished by utilizing the EIDORS toolkit, which was developed for application to this nonlinear and ill-posed inverse problem. Experiments have indicated that the EIT system can reconstruct resistive and capacitive images of good contrast despite errors in the measurement are not taken in account

    Assesment and optimisation techniques for an electrical impedance mammography system

    Get PDF
    Breast cancer detection through the use of Electrical Impedance Tomography (EIT) has been proposed for a number of years. Typically in an EIT or when in use in breast cancer detection, Electrical Impedance Mammography (EIM) system, the patient interface is that of electrodes. Positive and negative sinusoidal signals are injected into a patient multiple times at multiple frequencies, recording the developed surface voltages that naturally develop from the impedance of the body. A 2D or 3D reconstruction and visualisation of the impedance distribution is possible through the use of the recorded voltage amplitude and phase. Higher resolution images are achieved through higher electrode density (i.e.smaller electrode distance). Furthermore, tissue has a characteristic frequency response,which can be recorded if different injection frequencies are utilised. The higher thefrequency, the deeper the signal can penetrate into tissue and deeper through the cellular structures, potentially leading to tissue characterisation through its frequency response. Our group has suggested a unique combined EIT and ultrasound multimodal imaging system to detect breast cancer. This will use an EIT system to initially scan the breast,combining this parametric data with the high-resolution images of ultrasound to give a more accurate diagnosis. The prototype, known as V2, was functional but performed poorly, especially with respect to the signal to noise ratio. Images generated with this system were unclear. My role within the group was to analyze the performance of the V2 system and research best practice methods to improve the existing design, taking into consideration the intricacies of EIT hardware design and the targeted application. The improvements I suggested were incorporated into the V3 system, which was then compared with the V2 system, and showed significant performance improvement

    Interaction of cochlin and mechanosensitive channel TREK-1 in trabecular meshwork cells influences the regulation of intraocular pressure.

    Get PDF
    This work was funded by National Institute of Health Grants R01 EY016112, EY015266, and EY014801 and an unrestricted grant to the University of Miami's Bascom Palmer Eye Institute from Research to Prevent Blindness. Financial support from Fight for Sight is gratefully acknowledged. Funding to XG was provided by Instituto de Salud Carlos III, Spain (FIS PI14/00141 and RETIC RD12/0034/0003) and Generalitat de Catalunya (2014SGR1165). In the eye, intraocular pressure (IOP) is tightly regulated and its persistent increase leads to ocular hypertension and glaucoma. We have previously shown that trabecular meshwork (TM) cells might detect aqueous humor fluid shear stress via interaction of the extracellular matrix (ECM) protein cochlin with the cell surface bound and stretch-activated channel TREK-1. We provide evidence here that interaction between both proteins are involved in IOP regulation. Silencing of TREK-1 in mice prevents the previously demonstrated cochlin-overexpression mediated increase in IOP. Biochemical and electrophysiological experiments demonstrate that high shear stress-induced multimeric cochlin produces a qualitatively different interaction with TREK-1 compared to monomeric cochlin. Physiological concentrations of multimeric but not monomeric cochlin reduce TREK-1 current. Results presented here indicate that the interaction of TREK-1 and cochlin play an important role for maintaining IOP homeostasis
    • 

    corecore