144 research outputs found

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor

    Efficient DHT attack mitigation through peers' ID distribution

    Get PDF
    International audienceWe present a new solution to protect the widely deployed KAD DHT against localized attacks which can take control over DHT entries. We show through measurements that the IDs distribution of the best peers found after a lookup process follows a geometric distribution. We then use this result to detect DHT attacks by comparing real peers' ID distributions to the theoretical one thanks to the Kullback-Leibler divergence. When an attack is detected, we propose countermeasures that progressively remove suspicious peers from the list of possible contacts to provide a safe DHT access. Evaluations show that our method detects the most efficient attacks with a very small false-negative rate, while countermeasures successfully filter almost all malicious peers involved in an attack. Moreover, our solution completely fits the current design of the KAD network and introduces no network overhead

    Resilience Strategies for Network Challenge Detection, Identification and Remediation

    Get PDF
    The enormous growth of the Internet and its use in everyday life make it an attractive target for malicious users. As the network becomes more complex and sophisticated it becomes more vulnerable to attack. There is a pressing need for the future internet to be resilient, manageable and secure. Our research is on distributed challenge detection and is part of the EU Resumenet Project (Resilience and Survivability for Future Networking: Framework, Mechanisms and Experimental Evaluation). It aims to make networks more resilient to a wide range of challenges including malicious attacks, misconfiguration, faults, and operational overloads. Resilience means the ability of the network to provide an acceptable level of service in the face of significant challenges; it is a superset of commonly used definitions for survivability, dependability, and fault tolerance. Our proposed resilience strategy could detect a challenge situation by identifying an occurrence and impact in real time, then initiating appropriate remedial action. Action is autonomously taken to continue operations as much as possible and to mitigate the damage, and allowing an acceptable level of service to be maintained. The contribution of our work is the ability to mitigate a challenge as early as possible and rapidly detect its root cause. Also our proposed multi-stage policy based challenge detection system identifies both the existing and unforeseen challenges. This has been studied and demonstrated with an unknown worm attack. Our multi stage approach reduces the computation complexity compared to the traditional single stage, where one particular managed object is responsible for all the functions. The approach we propose in this thesis has the flexibility, scalability, adaptability, reproducibility and extensibility needed to assist in the identification and remediation of many future network challenges

    Ethereum’s Peer-to-Peer Network Monitoring and Sybil Attack Prevention

    Get PDF
    International audiencePublic blockchains, like Ethereum, rely on an underlying peer-to-peer (P2P) network to disseminate transactions and blocks between nodes. With the rise of blockchain applications and cryptocurrencies values, they have become critical infrastructures which still lack comprehensive studies. In this paper, we propose to investigate the reliability of the Ethereum P2P network. We developed our own dependable crawler to collect information about the peers composing the network. Our data analysis regarding the geographical distribution of peers and the churn rate shows good network properties while the network can exhibit a sudden and major increase in size and peers are highly concentrated on a few ASes. In a second time, we investigate suspicious patterns that can denote a Sybil attack. We find that many nodes hold numerous identities in the network and could become a threat. To mitigate future Sybil attacks, we propose an architecture to detect suspicious nodes and revoke them. It is based on a monitoring system, a smart contract to propagate the information and an external revocation tool to help clients remove their connections to suspicious peers. Our experiment on Ethereum's Test network proved that our solution is effective

    Analyzing and Enhancing Routing Protocols for Friend-to-Friend Overlays

    Get PDF
    The threat of surveillance by governmental and industrial parties is more eminent than ever. As communication moves into the digital domain, the advances in automatic assessment and interpretation of enormous amounts of data enable tracking of millions of people, recording and monitoring their private life with an unprecedented accurateness. The knowledge of such an all-encompassing loss of privacy affects the behavior of individuals, inducing various degrees of (self-)censorship and anxiety. Furthermore, the monopoly of a few large-scale organizations on digital communication enables global censorship and manipulation of public opinion. Thus, the current situation undermines the freedom of speech to a detrimental degree and threatens the foundations of modern society. Anonymous and censorship-resistant communication systems are hence of utmost importance to circumvent constant surveillance. However, existing systems are highly vulnerable to infiltration and sabotage. In particular, Sybil attacks, i.e., powerful parties inserting a large number of fake identities into the system, enable malicious parties to observe and possibly manipulate a large fraction of the communication within the system. Friend-to-friend (F2F) overlays, which restrict direct communication to parties sharing a real-world trust relationship, are a promising countermeasure to Sybil attacks, since the requirement of establishing real-world trust increases the cost of infiltration drastically. Yet, existing F2F overlays suffer from a low performance, are vulnerable to denial-of-service attacks, or fail to provide anonymity. Our first contribution in this thesis is concerned with an in-depth analysis of the concepts underlying the design of state-of-the-art F2F overlays. In the course of this analysis, we first extend the existing evaluation methods considerably, hence providing tools for both our and future research in the area of F2F overlays and distributed systems in general. Based on the novel methodology, we prove that existing approaches are inherently unable to offer acceptable delays without either requiring exhaustive maintenance costs or enabling denial-of-service attacks and de-anonymization. Consequentially, our second contribution lies in the design and evaluation of a novel concept for F2F overlays based on insights of the prior in-depth analysis. Our previous analysis has revealed that greedy embeddings allow highly efficient communication in arbitrary connectivity-restricted overlays by addressing participants through coordinates and adapting these coordinates to the overlay structure. However, greedy embeddings in their original form reveal the identity of the communicating parties and fail to provide the necessary resilience in the presence of dynamic and possibly malicious users. Therefore, we present a privacy-preserving communication protocol for greedy embeddings based on anonymous return addresses rather than identifying node coordinates. Furthermore, we enhance the communication’s robustness and attack-resistance by using multiple parallel embeddings and alternative algorithms for message delivery. We show that our approach achieves a low communication complexity. By replacing the coordinates with anonymous addresses, we furthermore provably achieve anonymity in the form of plausible deniability against an internal local adversary. Complementary, our simulation study on real-world data indicates that our approach is highly efficient and effectively mitigates the impact of failures as well as powerful denial-of-service attacks. Our fundamental results open new possibilities for anonymous and censorship-resistant applications.Die Bedrohung der Überwachung durch staatliche oder kommerzielle Stellen ist ein drängendes Problem der modernen Gesellschaft. Heutzutage findet Kommunikation vermehrt über digitale Kanäle statt. Die so verfügbaren Daten über das Kommunikationsverhalten eines Großteils der Bevölkerung in Kombination mit den Möglichkeiten im Bereich der automatisierten Verarbeitung solcher Daten erlauben das großflächige Tracking von Millionen an Personen, deren Privatleben mit noch nie da gewesener Genauigkeit aufgezeichnet und beobachtet werden kann. Das Wissen über diese allumfassende Überwachung verändert das individuelle Verhalten und führt so zu (Selbst-)zensur sowie Ängsten. Des weiteren ermöglicht die Monopolstellung einiger weniger Internetkonzernen globale Zensur und Manipulation der öffentlichen Meinung. Deshalb stellt die momentane Situation eine drastische Einschränkung der Meinungsfreiheit dar und bedroht die Grundfesten der modernen Gesellschaft. Systeme zur anonymen und zensurresistenten Kommunikation sind daher von ungemeiner Wichtigkeit. Jedoch sind die momentanen System anfällig gegen Sabotage. Insbesondere ermöglichen es Sybil-Angriffe, bei denen ein Angreifer eine große Anzahl an gefälschten Teilnehmern in ein System einschleust und so einen großen Teil der Kommunikation kontrolliert, Kommunikation innerhalb eines solchen Systems zu beobachten und zu manipulieren. F2F Overlays dagegen erlauben nur direkte Kommunikation zwischen Teilnehmern, die eine Vertrauensbeziehung in der realen Welt teilen. Dadurch erschweren F2F Overlays das Eindringen von Angreifern in das System entscheidend und verringern so den Einfluss von Sybil-Angriffen. Allerdings leiden die existierenden F2F Overlays an geringer Leistungsfähigkeit, Anfälligkeit gegen Denial-of-Service Angriffe oder fehlender Anonymität. Der erste Beitrag dieser Arbeit liegt daher in der fokussierten Analyse der Konzepte, die in den momentanen F2F Overlays zum Einsatz kommen. Im Zuge dieser Arbeit erweitern wir zunächst die existierenden Evaluationsmethoden entscheidend und erarbeiten so Methoden, die Grundlagen für unsere sowie zukünftige Forschung in diesem Bereich bilden. Basierend auf diesen neuen Evaluationsmethoden zeigen wir, dass die existierenden Ansätze grundlegend nicht fähig sind, akzeptable Antwortzeiten bereitzustellen ohne im Zuge dessen enorme Instandhaltungskosten oder Anfälligkeiten gegen Angriffe in Kauf zu nehmen. Folglich besteht unser zweiter Beitrag in der Entwicklung und Evaluierung eines neuen Konzeptes für F2F Overlays, basierenden auf den Erkenntnissen der vorangehenden Analyse. Insbesondere ergab sich in der vorangehenden Evaluation, dass Greedy Embeddings hoch-effiziente Kommunikation erlauben indem sie Teilnehmer durch Koordinaten adressieren und diese an die Struktur des Overlays anpassen. Jedoch sind Greedy Embeddings in ihrer ursprünglichen Form nicht auf anonyme Kommunikation mit einer dynamischen Teilnehmermengen und potentiellen Angreifern ausgelegt. Daher präsentieren wir ein Privätssphäre-schützenden Kommunikationsprotokoll für F2F Overlays, in dem die identifizierenden Koordinaten durch anonyme Adressen ersetzt werden. Des weiteren erhöhen wir die Resistenz der Kommunikation durch den Einsatz mehrerer Embeddings und alternativer Algorithmen zum Finden von Routen. Wir beweisen, dass unser Ansatz eine geringe Kommunikationskomplexität im Bezug auf die eigentliche Kommunikation sowie die Instandhaltung des Embeddings aufweist. Ferner zeigt unsere Simulationstudie, dass der Ansatz effiziente Kommunikation mit kurzen Antwortszeiten und geringer Instandhaltungskosten erreicht sowie den Einfluss von Ausfälle und Angriffe erfolgreich abschwächt. Unsere grundlegenden Ergebnisse eröffnen neue Möglichkeiten in der Entwicklung anonymer und zensurresistenter Anwendungen
    • …
    corecore