2,445 research outputs found

    Smart Grid Security: Threats, Challenges, and Solutions

    Get PDF
    The cyber-physical nature of the smart grid has rendered it vulnerable to a multitude of attacks that can occur at its communication, networking, and physical entry points. Such cyber-physical attacks can have detrimental effects on the operation of the grid as exemplified by the recent attack which caused a blackout of the Ukranian power grid. Thus, to properly secure the smart grid, it is of utmost importance to: a) understand its underlying vulnerabilities and associated threats, b) quantify their effects, and c) devise appropriate security solutions. In this paper, the key threats targeting the smart grid are first exposed while assessing their effects on the operation and stability of the grid. Then, the challenges involved in understanding these attacks and devising defense strategies against them are identified. Potential solution approaches that can help mitigate these threats are then discussed. Last, a number of mathematical tools that can help in analyzing and implementing security solutions are introduced. As such, this paper will provide the first comprehensive overview on smart grid security

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies

    Modelling interdependencies between the electricity and information infrastructures

    Full text link
    The aim of this paper is to provide qualitative models characterizing interdependencies related failures of two critical infrastructures: the electricity infrastructure and the associated information infrastructure. The interdependencies of these two infrastructures are increasing due to a growing connection of the power grid networks to the global information infrastructure, as a consequence of market deregulation and opening. These interdependencies increase the risk of failures. We focus on cascading, escalating and common-cause failures, which correspond to the main causes of failures due to interdependencies. We address failures in the electricity infrastructure, in combination with accidental failures in the information infrastructure, then we show briefly how malicious attacks in the information infrastructure can be addressed

    An integrated approach for failure mitigation & localization in power systems

    Get PDF
    The transmission grid is often comprised of several control areas that are connected by multiple tie lines in a mesh structure for reliability. It is also well-known that line failures can propagate non-locally and redundancy can exacerbate cascading. In this paper, we propose an integrated approach to grid reliability that (i) judiciously switches off a small number of tie lines so that the control areas are connected in a tree structure; and (ii) leverages a unified frequency control paradigm to provide congestion management in real time. Even though the proposed topology reduces redundancy, the integration of tree structure at regional level and real-time congestion management can provide stronger guarantees on failure localization and mitigation. We illustrate our approach on the IEEE 39-bus network and evaluate its performance on the IEEE 118-bus, 179-bus, 200-bus and 240-bus networks with various network congestion conditions. Simulations show that, compared with the traditional approach, our approach not only prevents load shedding in more failure scenarios, but also incurs smaller amounts of load loss in scenarios where load shedding is inevitable. Moreover, generators under our approach adjust their operations more actively and efficiently in a local manner

    An Integrated Approach for Failure Mitigation & Localization in Power Systems

    Get PDF
    The transmission grid is often comprised of several control areas that are connected by multiple tie lines in a mesh structure for reliability. It is also well-known that line failures can propagate non-locally and redundancy can exacerbate cascading. In this paper, we propose an integrated approach to grid reliability that (i) judiciously switches off a small number of tie lines so that the control areas are connected in a tree structure; and (ii) leverages a unified frequency control paradigm to provide congestion management in real time. Even though the proposed topology reduces redundancy, the integration of tree structure at regional level and real-time congestion management can provide stronger guarantees on failure localization and mitigation. We illustrate our approach on the IEEE 39-bus network and evaluate its performance on the IEEE 118-bus, 179-bus, 200-bus and 240-bus networks with various network congestion conditions. Simulations show that, compared with the traditional approach, our approach not only prevents load shedding in more failure scenarios, but also incurs smaller amounts of load loss in scenarios where load shedding is inevitable. Moreover, generators under our approach adjust their operations more actively and efficiently in a local manner.Comment: Accepted to the 21st Power Systems Computation Conference (PSCC 2020

    An integrated approach for failure mitigation & localization in power systems

    Get PDF
    The transmission grid is often comprised of several control areas that are connected by multiple tie lines in a mesh structure for reliability. It is also well-known that line failures can propagate non-locally and redundancy can exacerbate cascading. In this paper, we propose an integrated approach to grid reliability that (i) judiciously switches off a small number of tie lines so that the control areas are connected in a tree structure; and (ii) leverages a unified frequency control paradigm to provide congestion management in real time. Even though the proposed topology reduces redundancy, the integration of tree structure at regional level and real-time congestion management can provide stronger guarantees on failure localization and mitigation. We illustrate our approach on the IEEE 39-bus network and evaluate its performance on the IEEE 118-bus, 179-bus, 200-bus and 240-bus networks with various network congestion conditions. Simulations show that, compared with the traditional approach, our approach not only prevents load shedding in more failure scenarios, but also incurs smaller amounts of load loss in scenarios where load shedding is inevitable. Moreover, generators under our approach adjust their operations more actively and efficiently in a local manner

    Real-time Prediction of Cascading Failures in Power Systems

    Get PDF
    Blackouts in power systems cause major financial and societal losses, which necessitate devising better prediction techniques that are specifically tailored to detecting and preventing them. Since blackouts begin as a cascading failure (CF), an early detection of these CFs gives the operators ample time to stop the cascade from propagating into a large-scale blackout. In this thesis, a real-time load-based prediction model for CFs using phasor measurement units (PMUs) is proposed. The proposed model provides load-based predictions; therefore, it has the advantages of being applicable as a controller input and providing the operators with better information about the affected regions. In addition, it can aid in visualizing the effects of the CF on the grid. To extend the functionality and robustness of the proposed model, prediction intervals are incorporated based on the convergence width criterion (CWC) to allow the model to account for the uncertainties of the network, which was not available in previous works. Although this model addresses many issues in previous works, it has limitations in both scalability and capturing of transient behaviours. Hence, a second model based on recurrent neural network (RNN) long short-term memory (LSTM) ensemble is proposed. The RNN-LSTM is added to better capture the dynamics of the power system while also giving faster responses. To accommodate for the scalability of the model, a novel selection criterion for inputs is introduced to minimize the inputs while maintaining a high information entropy. The criteria include distance between buses as per graph theory, centrality of the buses with respect to fault location, and the information entropy of the bus. These criteria are merged using higher statistical moments to reflect the importance of each bus and generate indices that describe the grid with a smaller set of inputs. The results indicate that this model has the potential to provide more meaningful and accurate results than what is available in the previous literature and can be used as part of the integrated remedial action scheme (RAS) system either as a warning tool or a controller input as the accuracy of detecting affected regions reached 99.9% with a maximum delay of 400 ms. Finally, a validation loop extension is introduced to allow the model to self-update in real-time using importance sampling and case-based reasoning to extend the practicality of the model by allowing it to learn from historical data as time progresses

    Understanding and mitigating cascading crises in the global interconnected system

    Get PDF
    Cascading crises and disasters in the global interconnected system are emerging topics in today's disaster risk reduction research. The primary objective is improving the capability of our societies to cope with such events and mitigate their detrimental consequences through an evolved understanding of their nature. Rather than being merely considered as an outcome of low-probability/high-impact processes, cascading events can be associated with the cross-scale accumulation of vulnerability paths constituted by events waiting to happen. In this context, instead of focusing solely on triggering events, it seems important to point out the interactions orienting the escalation of secondary emergencies through vulnerability paths. This special issue integrates those emerging aspects with an operational approach that considers cascades as the complex, non-linear escalation of secondary emergencies. Key topics addressed by the contributions include: cross-domain modelling of interdependent systems; decision support systems; economic impact assessment of critical events; and cascades in the built environment, in social domains, and in applied emergency management. Our conclusions support the work of academia, and of public and private stakeholders, by providing a comprehensive analysis of the topic for the improvement of theory, the assessment of resilience, the formulation of policies for managing crises, and operational planning for emergencies
    • …
    corecore