61 research outputs found

    A Methodology for Extracting Human Bodies from Still Images

    Get PDF
    Monitoring and surveillance of humans is one of the most prominent applications of today and it is expected to be part of many future aspects of our life, for safety reasons, assisted living and many others. Many efforts have been made towards automatic and robust solutions, but the general problem is very challenging and remains still open. In this PhD dissertation we examine the problem from many perspectives. First, we study the performance of a hardware architecture designed for large-scale surveillance systems. Then, we focus on the general problem of human activity recognition, present an extensive survey of methodologies that deal with this subject and propose a maturity metric to evaluate them. One of the numerous and most popular algorithms for image processing found in the field is image segmentation and we propose a blind metric to evaluate their results regarding the activity at local regions. Finally, we propose a fully automatic system for segmenting and extracting human bodies from challenging single images, which is the main contribution of the dissertation. Our methodology is a novel bottom-up approach relying mostly on anthropometric constraints and is facilitated by our research in the fields of face, skin and hands detection. Experimental results and comparison with state-of-the-art methodologies demonstrate the success of our approach

    Facial feature point tracking based on a graphical model framework

    Get PDF
    In this thesis a facial feature point tracker that can be used in applications such as human-computer interfaces, facial expression analysis systems, driver fatigue detection systems, etc. is proposed. The proposed tracker is based on a graphical model framework. The position of the facial features are tracked through video streams by incorporating statistical relations in time and the spatial relations between feature points. In many application areas, including those mentioned above, tracking is a key intermediate step that has a significant effect on the overall system performance. For this reason, a good practical tracking algorithm should take into account real-world phenomena such as arbitrary head movements and occlusions. Many existing algorithms track each feature point independently, and do not properly handle occlusions. This causes drifts in the case of arbitrary head movements and occlusions. By exploiting the spatial relationships between feature points, the proposed method provides robustness in a number of scenarios, including e.g. various head movements. To prevent drifts because of occlusions, a Gabor feature based occlusion detector is developed and used in the proposed method. The performance of the proposed tracker has been evaluated on real video data under various conditions. These conditions include occluded facial gestures, low video resolution, illumination changes in the scene, in-plane head motion, and out-of-plane head motion. The proposed method has also been tested on videos recorded in a vehicle environment, in order to evaluate its performance in a practical setting. Given these results it can be concluded that the proposed method provides a general promising framework for facial feature tracking. It is a robust tracker for facial expression sequences in which there are occlusions and arbitrary head movements. The results in the vehicle environment suggest that the proposed method has the potential to be useful for tasks such as driver behavior analysis or driver fatigue detection

    Higher level techniques for the artistic rendering of images and video

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    QUIS-CAMPI: Biometric Recognition in Surveillance Scenarios

    Get PDF
    The concerns about individuals security have justified the increasing number of surveillance cameras deployed both in private and public spaces. However, contrary to popular belief, these devices are in most cases used solely for recording, instead of feeding intelligent analysis processes capable of extracting information about the observed individuals. Thus, even though video surveillance has already proved to be essential for solving multiple crimes, obtaining relevant details about the subjects that took part in a crime depends on the manual inspection of recordings. As such, the current goal of the research community is the development of automated surveillance systems capable of monitoring and identifying subjects in surveillance scenarios. Accordingly, the main goal of this thesis is to improve the performance of biometric recognition algorithms in data acquired from surveillance scenarios. In particular, we aim at designing a visual surveillance system capable of acquiring biometric data at a distance (e.g., face, iris or gait) without requiring human intervention in the process, as well as devising biometric recognition methods robust to the degradation factors resulting from the unconstrained acquisition process. Regarding the first goal, the analysis of the data acquired by typical surveillance systems shows that large acquisition distances significantly decrease the resolution of biometric samples, and thus their discriminability is not sufficient for recognition purposes. In the literature, diverse works point out Pan Tilt Zoom (PTZ) cameras as the most practical way for acquiring high-resolution imagery at a distance, particularly when using a master-slave configuration. In the master-slave configuration, the video acquired by a typical surveillance camera is analyzed for obtaining regions of interest (e.g., car, person) and these regions are subsequently imaged at high-resolution by the PTZ camera. Several methods have already shown that this configuration can be used for acquiring biometric data at a distance. Nevertheless, these methods failed at providing effective solutions to the typical challenges of this strategy, restraining its use in surveillance scenarios. Accordingly, this thesis proposes two methods to support the development of a biometric data acquisition system based on the cooperation of a PTZ camera with a typical surveillance camera. The first proposal is a camera calibration method capable of accurately mapping the coordinates of the master camera to the pan/tilt angles of the PTZ camera. The second proposal is a camera scheduling method for determining - in real-time - the sequence of acquisitions that maximizes the number of different targets obtained, while minimizing the cumulative transition time. In order to achieve the first goal of this thesis, both methods were combined with state-of-the-art approaches of the human monitoring field to develop a fully automated surveillance capable of acquiring biometric data at a distance and without human cooperation, designated as QUIS-CAMPI system. The QUIS-CAMPI system is the basis for pursuing the second goal of this thesis. The analysis of the performance of the state-of-the-art biometric recognition approaches shows that these approaches attain almost ideal recognition rates in unconstrained data. However, this performance is incongruous with the recognition rates observed in surveillance scenarios. Taking into account the drawbacks of current biometric datasets, this thesis introduces a novel dataset comprising biometric samples (face images and gait videos) acquired by the QUIS-CAMPI system at a distance ranging from 5 to 40 meters and without human intervention in the acquisition process. This set allows to objectively assess the performance of state-of-the-art biometric recognition methods in data that truly encompass the covariates of surveillance scenarios. As such, this set was exploited for promoting the first international challenge on biometric recognition in the wild. This thesis describes the evaluation protocols adopted, along with the results obtained by the nine methods specially designed for this competition. In addition, the data acquired by the QUIS-CAMPI system were crucial for accomplishing the second goal of this thesis, i.e., the development of methods robust to the covariates of surveillance scenarios. The first proposal regards a method for detecting corrupted features in biometric signatures inferred by a redundancy analysis algorithm. The second proposal is a caricature-based face recognition approach capable of enhancing the recognition performance by automatically generating a caricature from a 2D photo. The experimental evaluation of these methods shows that both approaches contribute to improve the recognition performance in unconstrained data.A crescente preocupação com a segurança dos indivíduos tem justificado o crescimento do número de câmaras de vídeo-vigilância instaladas tanto em espaços privados como públicos. Contudo, ao contrário do que normalmente se pensa, estes dispositivos são, na maior parte dos casos, usados apenas para gravação, não estando ligados a nenhum tipo de software inteligente capaz de inferir em tempo real informações sobre os indivíduos observados. Assim, apesar de a vídeo-vigilância ter provado ser essencial na resolução de diversos crimes, o seu uso está ainda confinado à disponibilização de vídeos que têm que ser manualmente inspecionados para extrair informações relevantes dos sujeitos envolvidos no crime. Como tal, atualmente, o principal desafio da comunidade científica é o desenvolvimento de sistemas automatizados capazes de monitorizar e identificar indivíduos em ambientes de vídeo-vigilância. Esta tese tem como principal objetivo estender a aplicabilidade dos sistemas de reconhecimento biométrico aos ambientes de vídeo-vigilância. De forma mais especifica, pretende-se 1) conceber um sistema de vídeo-vigilância que consiga adquirir dados biométricos a longas distâncias (e.g., imagens da cara, íris, ou vídeos do tipo de passo) sem requerer a cooperação dos indivíduos no processo; e 2) desenvolver métodos de reconhecimento biométrico robustos aos fatores de degradação inerentes aos dados adquiridos por este tipo de sistemas. No que diz respeito ao primeiro objetivo, a análise aos dados adquiridos pelos sistemas típicos de vídeo-vigilância mostra que, devido à distância de captura, os traços biométricos amostrados não são suficientemente discriminativos para garantir taxas de reconhecimento aceitáveis. Na literatura, vários trabalhos advogam o uso de câmaras Pan Tilt Zoom (PTZ) para adquirir imagens de alta resolução à distância, principalmente o uso destes dispositivos no modo masterslave. Na configuração master-slave um módulo de análise inteligente seleciona zonas de interesse (e.g. carros, pessoas) a partir do vídeo adquirido por uma câmara de vídeo-vigilância e a câmara PTZ é orientada para adquirir em alta resolução as regiões de interesse. Diversos métodos já mostraram que esta configuração pode ser usada para adquirir dados biométricos à distância, ainda assim estes não foram capazes de solucionar alguns problemas relacionados com esta estratégia, impedindo assim o seu uso em ambientes de vídeo-vigilância. Deste modo, esta tese propõe dois métodos para permitir a aquisição de dados biométricos em ambientes de vídeo-vigilância usando uma câmara PTZ assistida por uma câmara típica de vídeo-vigilância. O primeiro é um método de calibração capaz de mapear de forma exata as coordenadas da câmara master para o ângulo da câmara PTZ (slave) sem o auxílio de outros dispositivos óticos. O segundo método determina a ordem pela qual um conjunto de sujeitos vai ser observado pela câmara PTZ. O método proposto consegue determinar em tempo-real a sequência de observações que maximiza o número de diferentes sujeitos observados e simultaneamente minimiza o tempo total de transição entre sujeitos. De modo a atingir o primeiro objetivo desta tese, os dois métodos propostos foram combinados com os avanços alcançados na área da monitorização de humanos para assim desenvolver o primeiro sistema de vídeo-vigilância completamente automatizado e capaz de adquirir dados biométricos a longas distâncias sem requerer a cooperação dos indivíduos no processo, designado por sistema QUIS-CAMPI. O sistema QUIS-CAMPI representa o ponto de partida para iniciar a investigação relacionada com o segundo objetivo desta tese. A análise do desempenho dos métodos de reconhecimento biométrico do estado-da-arte mostra que estes conseguem obter taxas de reconhecimento quase perfeitas em dados adquiridos sem restrições (e.g., taxas de reconhecimento maiores do que 99% no conjunto de dados LFW). Contudo, este desempenho não é corroborado pelos resultados observados em ambientes de vídeo-vigilância, o que sugere que os conjuntos de dados atuais não contêm verdadeiramente os fatores de degradação típicos dos ambientes de vídeo-vigilância. Tendo em conta as vulnerabilidades dos conjuntos de dados biométricos atuais, esta tese introduz um novo conjunto de dados biométricos (imagens da face e vídeos do tipo de passo) adquiridos pelo sistema QUIS-CAMPI a uma distância máxima de 40m e sem a cooperação dos sujeitos no processo de aquisição. Este conjunto permite avaliar de forma objetiva o desempenho dos métodos do estado-da-arte no reconhecimento de indivíduos em imagens/vídeos capturados num ambiente real de vídeo-vigilância. Como tal, este conjunto foi utilizado para promover a primeira competição de reconhecimento biométrico em ambientes não controlados. Esta tese descreve os protocolos de avaliação usados, assim como os resultados obtidos por 9 métodos especialmente desenhados para esta competição. Para além disso, os dados adquiridos pelo sistema QUIS-CAMPI foram essenciais para o desenvolvimento de dois métodos para aumentar a robustez aos fatores de degradação observados em ambientes de vídeo-vigilância. O primeiro é um método para detetar características corruptas em assinaturas biométricas através da análise da redundância entre subconjuntos de características. O segundo é um método de reconhecimento facial baseado em caricaturas automaticamente geradas a partir de uma única foto do sujeito. As experiências realizadas mostram que ambos os métodos conseguem reduzir as taxas de erro em dados adquiridos de forma não controlada

    Estimating and understanding motion : from diagnostic to robotic surgery

    Get PDF
    Estimating and understanding motion from an image sequence is a central topic in computer vision. The high interest in this topic is because we are living in a world where many events that occur in the environment are dynamic. This makes motion estimation and understanding a natural component and a key factor in a widespread of applications including object recognition , 3D shape reconstruction, autonomous navigation and medica! diagnosis. Particularly, we focus on the medical domain in which understanding the human body for clinical purposes requires retrieving the organs' complex motion patterns, which is in general a hard problem when using only image data. In this thesis, we cope with this problem by posing the question - How to achieve a realistic motion estimation to offer a better clinical understanding? We focus this thesis on answering this question by using a variational formulation as a basis to understand one of the most complex motions in the human's body, the heart motion, through three different applications: (i) cardiac motion estimation for diagnostic, (ii) force estimation and (iii) motion prediction, both for robotic surgery. Firstly, we focus on a central topic in cardiac imaging that is the estimation of the cardiac motion. The main aim is to offer objective and understandable measures to physicians for helping them in the diagnostic of cardiovascular diseases. We employ ultrafast ultrasound data and tools for imaging motion drawn from diverse areas such as low-rank analysis and variational deformation to perform a realistic cardiac motion estimation. The significance is that by taking low-rank data with carefully chosen penalization, synergies in this complex variational problem can be created. We demonstrate how our proposed solution deals with complex deformations through careful numerical experiments using realistic and simulated data. We then move from diagnostic to robotic surgeries where surgeons perform delicate procedures remotely through robotic manipulators without directly interacting with the patients. As a result, they lack force feedback, which is an important primary sense for increasing surgeon-patient transparency and avoiding injuries and high mental workload. To solve this problem, we follow the conservation principies of continuum mechanics in which it is clear that the change in shape of an elastic object is directly proportional to the force applied. Thus, we create a variational framework to acquire the deformation that the tissues undergo due to an applied force. Then, this information is used in a learning system to find the nonlinear relationship between the given data and the applied force. We carried out experiments with in-vivo and ex-vivo data and combined statistical, graphical and perceptual analyses to demonstrate the strength of our solution. Finally, we explore robotic cardiac surgery, which allows carrying out complex procedures including Off-Pump Coronary Artery Bypass Grafting (OPCABG). This procedure avoids the associated complications of using Cardiopulmonary Bypass (CPB) since the heart is not arrested while performing the surgery on a beating heart. Thus, surgeons have to deal with a dynamic target that compromisetheir dexterity and the surgery's precision. To compensate the heart motion, we propase a solution composed of three elements: an energy function to estimate the 3D heart motion, a specular highlight detection strategy and a prediction approach for increasing the robustness of the solution. We conduct evaluation of our solution using phantom and realistic datasets. We conclude the thesis by reporting our findings on these three applications and highlight the dependency between motion estimation and motion understanding at any dynamic event, particularly in clinical scenarios.L’estimació i comprensió del moviment dins d’una seqüència d’imatges és un tema central en la visió per ordinador, el que genera un gran interès perquè vivim en un entorn ple d’esdeveniments dinàmics. Per aquest motiu és considerat com un component natural i factor clau dins d’un ampli ventall d’aplicacions, el qual inclou el reconeixement d’objectes, la reconstrucció de formes tridimensionals, la navegació autònoma i el diagnòstic de malalties. En particular, ens situem en l’àmbit mèdic en el qual la comprensió del cos humà, amb finalitats clíniques, requereix l’obtenció de patrons complexos de moviment dels òrgans. Aquesta és, en general, una tasca difícil quan s’utilitzen només dades de tipus visual. En aquesta tesi afrontem el problema plantejant-nos la pregunta - Com es pot aconseguir una estimació realista del moviment amb l’objectiu d’oferir una millor comprensió clínica? La tesi se centra en la resposta mitjançant l’ús d’una formulació variacional com a base per entendre un dels moviments més complexos del cos humà, el del cor, a través de tres aplicacions: (i) estimació del moviment cardíac per al diagnòstic, (ii) estimació de forces i (iii) predicció del moviment, orientant-se les dues últimes en cirurgia robòtica. En primer lloc, ens centrem en un tema principal en la imatge cardíaca, que és l’estimació del moviment cardíac. L’objectiu principal és oferir als metges mesures objectives i comprensibles per ajudar-los en el diagnòstic de les malalties cardiovasculars. Fem servir dades d’ultrasons ultraràpids i eines per al moviment d’imatges procedents de diverses àrees, com ara l’anàlisi de baix rang i la deformació variacional, per fer una estimació realista del moviment cardíac. La importància rau en que, en prendre les dades de baix rang amb una penalització acurada, es poden crear sinergies en aquest problema variacional complex. Mitjançant acurats experiments numèrics, amb dades realístiques i simulades, hem demostrat com les nostres propostes solucionen deformacions complexes. Després passem del diagnòstic a la cirurgia robòtica, on els cirurgians realitzen procediments delicats remotament, a través de manipuladors robòtics, sense interactuar directament amb els pacients. Com a conseqüència, no tenen la percepció de la força com a resposta, que és un sentit primari important per augmentar la transparència entre el cirurgià i el pacient, per evitar lesions i per reduir la càrrega de treball mental. Resolem aquest problema seguint els principis de conservació de la mecànica del medi continu, en els quals està clar que el canvi en la forma d’un objecte elàstic és directament proporcional a la força aplicada. Per això hem creat un marc variacional que adquireix la deformació que pateixen els teixits per l’aplicació d’una força. Aquesta informació s’utilitza en un sistema d’aprenentatge, per trobar la relació no lineal entre les dades donades i la força aplicada. Hem dut a terme experiments amb dades in-vivo i ex-vivo i hem combinat l’anàlisi estadístic, gràfic i de percepció que demostren la robustesa de la nostra solució. Finalment, explorem la cirurgia cardíaca robòtica, la qual cosa permet realitzar procediments complexos, incloent la cirurgia coronària sense bomba (off-pump coronary artery bypass grafting o OPCAB). Aquest procediment evita les complicacions associades a l’ús de circulació extracorpòria (Cardiopulmonary Bypass o CPB), ja que el cor no s’atura mentre es realitza la cirurgia. Això comporta que els cirurgians han de tractar amb un objectiu dinàmic que compromet la seva destresa i la precisió de la cirurgia. Per compensar el moviment del cor, proposem una solució composta de tres elements: un funcional d’energia per estimar el moviment tridimensional del cor, una estratègia de detecció de les reflexions especulars i una aproximació basada en mètodes de predicció, per tal d’augmentar la robustesa de la solució. L’avaluació de la nostra solució s’ha dut a terme mitjançant conjunts de dades sintètiques i realistes. La tesi conclou informant dels nostres resultats en aquestes tres aplicacions i posant de relleu la dependència entre l’estimació i la comprensió del moviment en qualsevol esdeveniment dinàmic, especialment en escenaris clínics.Postprint (published version

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing
    corecore