9 research outputs found

    Geodesic tractography segmentation for directional medical image analysis

    Get PDF
    Acknowledgements page removed per author's request, 01/06/2014.Geodesic Tractography Segmentation is the two component approach presented in this thesis for the analysis of imagery in oriented domains, with emphasis on the application to diffusion-weighted magnetic resonance imagery (DW-MRI). The computeraided analysis of DW-MRI data presents a new set of problems and opportunities for the application of mathematical and computer vision techniques. The goal is to develop a set of tools that enable clinicians to better understand DW-MRI data and ultimately shed new light on biological processes. This thesis presents a few techniques and tools which may be used to automatically find and segment major neural fiber bundles from DW-MRI data. For each technique, we provide a brief overview of the advantages and limitations of our approach relative to other available approaches.Ph.D.Committee Chair: Tannenbaum, Allen; Committee Member: Barnes, Christopher F.; Committee Member: Niethammer, Marc; Committee Member: Shamma, Jeff; Committee Member: Vela, Patrici

    Π˜ΡΠΊΡƒΡΡΡ‚Π²Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ ΠΏΡ€ΠΈ ΠΊΠΎΠ»ΠΎΡ€Π΅ΠΊΡ‚Π°Π»ΡŒΠ½ΠΎΠΌ Ρ€Π°ΠΊΠ΅: ΠΎΠ±Π·ΠΎΡ€

    Get PDF
    The study objective: the study objective is to examine the use of artificial intelligence (AI) in the diagnosis, treatment, and prognosis of Colorectal Cancer (CRC) and discuss the future potential of AI in CRC. Material and Methods. The Web of Science, Scopus, PubMed, Medline, and eLIBRARY databases were used to search for the publications. A study on the application of Artificial Intelligence (AI) to the diagnosis, treatment, and prognosis of Colorectal Cancer (CRC) was discovered in more than 100 sources. In the review, data from 83 articles were incorporated. Results. The review article explores the use of artificial intelligence (AI) in medicine, specifically focusing on its applications in colorectal cancer (CRC). It discusses the stages of AI development for CRC, including molecular understanding, image-based diagnosis, drug design, and individualized treatment. The benefits of AI in medical image analysis are highlighted, improving diagnosis accuracy and inspection quality. Challenges in AI development are addressed, such as data standardization and the interpretability of machine learning algorithms. The potential of AI in treatment decision support, precision medicine, and prognosis prediction is discussed, emphasizing the role of AI in selecting optimal treatments and improving surgical precision. Ethical and regulatory considerations in integrating AI are mentioned, including patient trust, data security, and liability in AI-assisted surgeries. The review emphasizes the importance of an AI standard system, dataset standardization, and integrating clinical knowledge into AI algorithms. Overall, the article provides an overview of the current research on AI in CRC diagnosis, treatment, and prognosis, discussing its benefits, challenges, and future prospects in improving medical outcomes.ЦСль исслСдования - ΠΎΡ†Π΅Π½ΠΊΠ° возмоТностСй использования искусствСнного ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚Π° (ИИ) Π² диагностикС, Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ ΠΈ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠΎΠ»ΠΎΡ€Π΅ΠΊΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ° (КРР), Π° Ρ‚Π°ΠΊΠΆΠ΅ обсуТдСниС ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° ИИ Π² Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ КРР. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ поиск Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΉ Π² поисковых систСмах Web of Science, Scopus, PubMed, Medline ΠΈ eLIBRARY. Π‘Ρ‹Π»ΠΎ просмотрСно Π±ΠΎΠ»Π΅Π΅ 100 источников ΠΏΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ ИИ для диагностики, лСчСния ΠΈ прогнозирования КРР. Π’ ΠΎΠ±Π·ΠΎΡ€ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ Π΄Π°Π½Π½Ρ‹Π΅ ΠΈΠ· 83 статСй. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, посвящСнной ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ искусствСнного ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚Π° Π² ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅, особоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ Π΅Π³ΠΎ использованию ΠΏΡ€ΠΈ ΠΊΠΎΠ»ΠΎΡ€Π΅ΠΊΡ‚Π°Π»ΡŒΠ½ΠΎΠΌ Ρ€Π°ΠΊΠ΅. ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ этапы развития ИИ ΠΏΡ€ΠΈ КРР, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΡƒΡŽ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ, Π»ΡƒΡ‡Π΅Π²ΡƒΡŽ диагностику, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ лСкарств ΠΈ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½ΠΎΠ΅ Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠ½ΡƒΡ‚Ρ‹ прСимущСства ИИ Π² Π°Π½Π°Π»ΠΈΠ·Π΅ мСдицинских ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ КВ, МРВ ΠΈ ПЭВ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ диагностики. Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Ρ‚Π°ΠΊΠΈΠ΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ развития ИИ, ΠΊΠ°ΠΊ стандартизация Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΠΎΡΡ‚ΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² машинного обучСния. ΠŸΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠΈΠ²Π°Π΅Ρ‚ΡΡ Ρ€ΠΎΠ»ΡŒ ИИ Π² Π²Ρ‹Π±ΠΎΡ€Π΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π°ΠΊΡ‚ΠΈΠΊΠΈ лСчСния ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠΈ эффСктивности хирургичСского Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°. Π£Ρ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ этичСскиС ΠΈ Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ аспСкты ИИ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π΄ΠΎΠ²Π΅Ρ€ΠΈΠ΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡ‚ΡŒ Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ ΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ с использованиСм ИИ. ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ прСимущСства ИИ Π² диагностикС, Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ ΠΈ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠΎΠ»ΠΎΡ€Π΅ΠΊΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ°, ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ ΠΈ пСрспСктивы ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² лСчСния

    Segmentation and polyp detection in virtual colonoscopy : a complete system for computer aided diagnosis

    Get PDF
    El cancer colorectal es una de las mayores causas de muerte por cancer en el mundo. La deteccion temprana de polipos es fundamental para su tratamiento, permitiendo alcanzar tasas del 90% de curabilidad. La tecnica habitual para la deteccion de polipos, debido a su elevada performance, es la colonoscopia optica (tecnica invasiva y extremadamente cara). A mediados de los '90 surge la tecnica denominada colonoscopia virtual. Esta tecnica consiste en la reconstruccion 3D del colon a partir de cortes de tomografia computada. Es por ende una tecnica no invasiva, y relativamente barata, pero la cantidad de falsos positivos y falsos negativos producida por estos metodos esta muy por encima de los maximos aceptados en la practica medica. Los avances recientes en las tecnicas de imagenologia parecerian hacer posible la reduccion de estas tasas. Como consecuencia de esto, estamos asistiendo a un nuevo interes por la colonoscopia virtual. En este trabajo se presenta un sistema completo de diagnostico asistido por computadora. La primera etapa del sistema es la segmentacion, que consiste en la reconstruccion 3D de la superficie del colon a partir del volumen tomografico. El aporte principal en este paso es el suavizado de la imagen. A partir de la superficie, se detectan aquellas zonas candidatas de ser polipos mediante una estrategia multi-escala que permite delinear con precision la zona. Luego para cada candidato se extraen caracteristicas geometricas y de textura, que son calculadas tambien en el tejido que rodea la zona a efectos de compararlas. Finalmente las zonas candidatas se clasifican utilizando SVM. Los resultados obtenidos son prometedores, permitiendo detectar un 100% de los polipos mayoresColorectal cancer is the second leading cause of cancer-related death in the United States, and the third cause worldwide. The early detection of polyps is fundamental, allowing to reduce mortality rates up to 90%. Nowadays, optical colonoscopy is the most used detection method due in part to its relative high performance. Virtual Colonoscopy is a promising alternative technique that emerged in the 90's. It uses volumetric Computed Tomographic data of the cleansed and air-distended colon, and the examination is made by a specialist from the images in a computer. Therefore, this technique is less invasive and less expensive than optical colonoscopy, but up to now the false positive and false negative rates are above the accepted medical limits. Recent advances in imaging techniques have the potential to reduce these rates; consequently, we are currently re-experiencing an increasing interest in Virtual Colonoscopy. In this work we propose a complete pipeline for a Computer-Aided Detection algorithm. The system starts with a novel and simple segmentation step. We then introduce geometrical and textural features that take into account not only the candidate polyp region, but the surrounding area at multiple scales as well. This way, our proposed CAD algorithm is able to accurately detect candidate polyps by measuring local variations of these features. Candidate patches are then classi ed using SVM. The whole algorithm is completely automatic and produces state-of-the-art results, achieving 100% sensitivity for polyps greater than 6mm in size with less than one false positive per case, and 100% sensitivity for polyps greater than 3mm in size with 2:2 false positives per case

    Segmentation and classification of lung nodules from Thoracic CT scans : methods based on dictionary learning and deep convolutional neural networks.

    Get PDF
    Lung cancer is a leading cause of cancer death in the world. Key to survival of patients is early diagnosis. Studies have demonstrated that screening high risk patients with Low-dose Computed Tomography (CT) is invaluable for reducing morbidity and mortality. Computer Aided Diagnosis (CADx) systems can assist radiologists and care providers in reading and analyzing lung CT images to segment, classify, and keep track of nodules for signs of cancer. In this thesis, we propose a CADx system for this purpose. To predict lung nodule malignancy, we propose a new deep learning framework that combines Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to learn best in-plane and inter-slice visual features for diagnostic nodule classification. Since a nodule\u27s volumetric growth and shape variation over a period of time may reveal information regarding the malignancy of nodule, separately, a dictionary learning based approach is proposed to segment the nodule\u27s shape at two time points from two scans, one year apart. The output of a CNN classifier trained to learn visual appearance of malignant nodules is then combined with the derived measures of shape change and volumetric growth in assigning a probability of malignancy to the nodule. Due to the limited number of available CT scans of benign and malignant nodules in the image database from the National Lung Screening Trial (NLST), we chose to initially train a deep neural network on the larger LUNA16 Challenge database which was built for the purpose of eliminating false positives from detected nodules in thoracic CT scans. Discriminative features that were learned in this application were transferred to predict malignancy. The algorithm for segmenting nodule shapes in serial CT scans utilizes a sparse combination of training shapes (SCoTS). This algorithm captures a sparse representation of a shape in input data through a linear span of previously delineated shapes in a training repository. The model updates shape prior over level set iterations and captures variabilities in shapes by a sparse combination of the training data. The level set evolution is therefore driven by a data term as well as a term capturing valid prior shapes. During evolution, the shape prior influence is adjusted based on shape reconstruction, with the assigned weight determined from the degree of sparsity of the representation. The discriminative nature of sparse representation, affords us the opportunity to compare nodules\u27 variations in consecutive time points and to predict malignancy. Experimental validations of the proposed segmentation algorithm have been demonstrated on 542 3-D lung nodule data from the LIDC-IDRI database which includes radiologist delineated nodule boundaries. The effectiveness of the proposed deep learning and dictionary learning architectures for malignancy prediction have been demonstrated on CT data from 370 biopsied subjects collected from the NLST database. Each subject in this database had at least two serial CT scans at two separate time points one year apart. The proposed RNN CAD system achieved an ROC Area Under the Curve (AUC) of 0.87, when validated on CT data from nodules at second sequential time point and 0.83 based on dictionary learning method; however, when nodule shape change and appearance were combined, the classifier performance improved to AUC=0.89

    Detection and Segmentation of Colonic Polyps on Implicit Isosurfaces by Second Principal Curvature Flow

    No full text
    Today’s computer aided detection systems for computed tomography colonography (CTC) enable automated detection and segmentation of colorectal polyps.We present a paradigm shift by proposing a method that measures the amount of protrudedness of a candidate object in a scale adaptive fashion. One of the main results is that the performance of the candidate detection depends only on one parameter, the amount of protrusion. Additionally the method yields correct polyp segmentation without the need of an additional segmentation step. The supervised pattern recognition involves a clear distinction between size related features and features related to shape or intensity. A Mahalanobis transformation of the latter facilitates ranking of the objects using a logistic classifier. We evaluate two implementations of the method on 84 patients with a total of 57 polyps larger than or equal to 6 mm.We obtained a performance of 95% sensitivity at four false positives per scan for polyps larger than or equal to 6 mm.Imaging Science and TechnologyApplied Science
    corecore