84,328 research outputs found

    Automatically detecting road sign text from natural scene video

    Full text link
    Automatic detection of text on road signs can help drivers keep aware of the traffic situation and surrounding environments by reminding them of the signs ahead. Current systems can only detect constrained road signs or produce unsatisfying performance when dealing with complex scenes in practical use. This paper firstly reviews the existing techniques used for text detection from natural scene. A novel system which detects text on road signs from natural scene video is then proposed. Our detailed approaches and methodology give a promising solution to this problem in order to reduce the running time and improve the recognition rate. © 2006 IEEE

    Road traffic sign detection and classification

    Get PDF
    A vision-based vehicle guidance system for road vehicles can have three main roles: (1) road detection; (2) obstacle detection; and (3) sign recognition. The first two have been studied for many years and with many good results, but traffic sign recognition is a less-studied field. Traffic signs provide drivers with very valuable information about the road, in order to make driving safer and easier. The authors think that traffic signs most play the same role for autonomous vehicles. They are designed to be easily recognized by human drivers mainly because their color and shapes are very different from natural environments. The algorithm described in this paper takes advantage of these features. It has two main parts. The first one, for the detection, uses color thresholding to segment the image and shape analysis to detect the signs. The second one, for the classification, uses a neural network. Some results from natural scenes are shown.Publicad

    Fast traffic sign recognition using color segmentation and deep convolutional networks

    Get PDF
    The use of Computer Vision techniques for the automatic recognition of road signs is fundamental for the development of intelli- gent vehicles and advanced driver assistance systems. In this paper, we describe a procedure based on color segmentation, Histogram of Ori- ented Gradients (HOG), and Convolutional Neural Networks (CNN) for detecting and classifying road signs. Detection is speeded up by a pre- processing step to reduce the search space, while classication is carried out by using a Deep Learning technique. A quantitative evaluation of the proposed approach has been conducted on the well-known German Traf- c Sign data set and on the novel Data set of Italian Trac Signs (DITS), which is publicly available and contains challenging sequences captured in adverse weather conditions and in an urban scenario at night-time. Experimental results demonstrate the eectiveness of the proposed ap- proach in terms of both classication accuracy and computational speed

    Car Traffic Sign Annunciator

    Get PDF
    Automatic detection and recognition of traffic signs is an essential part of automated driver assistance systems which contribute to the safety of the drivers, pedestrians and vehicles. This paper presents the advanced driver assistance system (ADAS) based on Raspberry pi for traffic sign detection, recognition and annunciation. Such a system presents a vital support for driver assistance in an intelligent automotive. The proposed algorithm is implemented in a real time embedded system using OpenCV library. Proposed method introduced a new method for detection and recognition of traffic signs. Firstly, Potential traffic signs regions are detected by colour segmentation method, then classified using HOG features and a linear SVM classifier to identify the traffic sign class. The proposed system shows good recognition rate under complex challenging lighting and weather conditions. Experimental results on the accuracy of the road sign detection are reported in this paper

    Erratum to: Mobile system for road sign detection and recognition with template matching

    Get PDF
    This paper explores the effective approach to road sign detection and recognition based on mobile devices. Detecting and recognising road signs is a challenging matter because of different shapes, complex background and irregular sign illumination. The main goal of the system is to assist drivers by warning them about the existence of road signs to increase safety during driving. In this paper, the system for detection and recognition of road signs was implemented and tested with the use of Open Source Computer Vision Library (OpenCV). The system consists of two parts. The first part is the detection stage, which is used to detect the signs from the whole image frame and includes the modules: data-image acquisition, image pre-processing and sign detection. During this stage, the impact of Canny edge detector and Hough transform parameters on the quality-level of sign detection was tested. The second part is the recognition stage, whose role is to match the detected object with a priori models of signs in the dataset. In the research, the authors also compared the influence of various image processing algorithms parameters to the time of road sign recognition. The discussion part answers also the question whether the mobile system (smartphone) is robust enough to detect and recognise road sings in real time

    Two algorithms for detection of mutually occluding traffic signs

    Get PDF
    The robust identification of the traffic signs represents the first and one of the most important steps in the development of a traffic sign recognition (TSR) system. Traffic signs detection usually involves a color segmentation process that uses the information related to the chromatic properties of the road signs. Since the traffic video data is captured in diverse road and weather conditions, the problem relating to traffic sign detection is quite challenging. Among several issues that need to be addressed during this processing stage, the problem generated by mutually occluding traffic signs (mutual occlusion occurs when one traffic sign partially occludes the surface of other road signs) that are attached to the same pole require special attention. In these situations the color segmentation process fails to correctly identify the regions that are associated with the traffic signs. These traffic sign detection failures compromise the performance of other stages of the TSR system and in this paper we propose two approaches that address the segmentation of mutually occluding traffic signs. The first approach uses the information associated with the inner parts of the traffic signs, while the second approach applies the watershed transform to identify the signs that have their borders in contact or are mutually occluding

    Road Sign Analysis Using Multisensory Data

    Get PDF
    This paper deals with the problem of estimating the following road sign parameters: height, dimensions, visibility distance and partial occlusions. This work belongs to a framework whose main applications involve road sign maintenance, driver assistance, and inventory systems. From this paper we suggest a multisensory system composed from two cameras, a GPS receiver, and a distance measurement device,all of them installed in a car. The process consists of several steps which include road sign detection, recognition and tracking , and road signs parameters estimation. From some trigonometric properties, and a camera model, the information provided by the tracking subsystem and the distance measurement sensors, we estimate the road signs parameters.Results show that the described calculation methodology offers a correct estimation for all types of traffic signs

    Road Sign Analysis Using Multisensory Data

    Get PDF
    This paper deals with the problem of estimating the following road sign parameters: height, dimensions, visibility distance and partial occlusions. This work belongs to a framework whose main applications involve road sign maintenance, driver assistance, and inventory systems. From this paper we suggest a multisensory system composed from two cameras, a GPS receiver, and a distance measurement device,all of them installed in a car. The process consists of several steps which include road sign detection, recognition and tracking , and road signs parameters estimation. From some trigonometric properties, and a camera model, the information provided by the tracking subsystem and the distance measurement sensors, we estimate the road signs parameters.Results show that the described calculation methodology offers a correct estimation for all types of traffic signs
    corecore