791 research outputs found

    A review of RFI mitigation techniques in microwave radiometry

    Get PDF
    Radio frequency interference (RFI) is a well-known problem in microwave radiometry (MWR). Any undesired signal overlapping the MWR protected frequency bands introduces a bias in the measurements, which can corrupt the retrieved geophysical parameters. This paper presents a literature review of RFI detection and mitigation techniques for microwave radiometry from space. The reviewed techniques are divided between real aperture and aperture synthesis. A discussion and assessment of the application of RFI mitigation techniques is presented for each type of radiometer.Peer ReviewedPostprint (published version

    Novel multipath mitigation methods using a dual-polarization antenna

    Get PDF
    There are many methods for mitigating GNSS multipath errors. However, none of them completely eliminate the effects of multipath or suit all GNSS applications. A new class of multipath mitigation methods exploit new dual-polarization antenna technology. GNSS signals received direct from the satellites have right-handed circular polarization (RHCP), whereas (singly) reflected signals have left-handed circular polarization (LHCP) or an elliptical polarization that may be expressed as the sum of RHCP and LHCP components. Conventional GNSS user antennas are more sensitive to signals with RHCP, attenuating LHCP signals and reducing, but not eliminating, the multipath errors in the receiver. An antenna with the opposite polarization sensitivity will attenuate the direct signals more than the reflected signals. This can be used to characterizing the reflected signals and thus mitigate the effects of multipath interference.Experimental work using an Antcom dual-polarization antenna and dual geodetic receivers is presented. This verifies that carrier power to noise density, C/N-0, measurements obtained by separately correlating the RHCP and LHCP antenna outputs can be used to distinguish between a low-multipath and moderate-multipath environment. This may be used as the basis of a multipath detection technique.Three different multipath mitigation techniques that use a dual-polarization antenna are proposed. Measurement weighting estimates the code and carrier multipath error standard deviation from the RHCP-LHCP C/N-0 difference and elevation angle. This is used by the navigation processor to discard and reweight measurements. Range-domain multipath correction, uses the pseudo-range, carrier-phase and C/N-0 differences between the outputs of RHCP and LHCP receiver tracking channels, together with antenna calibration data, to estimate corrections to the code and carrier measurements. In tracking-domain multipath mitigation, the RHCP and LHCP correlator outputs are input to common acquisition and tracking algorithms which attempt to separate the direct line of sight and reflected signalsThe design of a novel dual-input GNSS front end, based on direct RF sampling, is presented This will be used, in conjunction with a software GNSS receiver, for future development and testing of multipath mitigation using a dual-polarization antenna

    A Portfolio Approach to NLOS and Multipath Mitigation in Dense Urban Areas

    Get PDF
    Non-line-of-sight (NLOS) reception and multipath interference are major causes of poor GNSS positioning accuracy in dense urban environments. They are commonly grouped together. However, both the mechanisms by which they cause position errors and many of the techniques for mitigating those errors are quite different [1]. For example, correlation-based multipath mitigation has no effect on the errors caused by NLOS reception. University College London (UCL) has investigated the performance of a number of multipath and/or NLOS mitigation techniques in dense urban areas, including C/N0-based solution weighting [2], advanced consistency checking [3], dual-polarization NLOS detection [4] and vector tracking [5]. In this paper, we present a new multipath detection technique based on comparing the measured C/N0 on multiple frequencies and also new dual-polarization results. Meanwhile, other researchers have demonstrated NLOS detection using a panoramic camera [6, 7] or 3D city model [8, 9] and detection of NLOS and multipath using an antenna array [10]. All of these techniques bring some improvement in positioning performance in urban environments, but none of them eliminate the effects of both NLOS reception and multipath interference completely. As the different techniques are largely complementary, best performance is obtained by using several of them in combination, a portfolio approach. This paper comprises three parts. The first presents a feasibility study on a new multipath detection technique using multi-frequency C/N0 measurements. Constructive multipath interference results in an increase in the measured C/N0, whereas destructive multipath interference results in a decrease. As the phase of a reflected signal with respect to its directly received counterpart depends on the wavelength, the multipath interference may be constructive on one frequency and destructive on another. Thus, by comparing the difference in measured C/N0 between two frequencies with what would normally be expected for that signal at that elevation angle, strong multipath interference may be detected. However, the converse is not true because, depending on the path delay, the phase of the multipath interference may also be consistent across the two frequencies. Consistency across three frequencies in the presence of multipath interference is much less likely than consistency across two. Therefore, by comparing C/N0 measured across three (or more) frequencies, the chance of detection is improved substantially, noting that reliability is less critical as part of a portfolio approach to multipath detection than for a stand-alone technique. Experimental results are presented demonstrating the potential of this approach using GPS and GLONASS data collected in Central London. The second part of the paper presents the results of the first multi-constellation test of the dual-polarization NLOS detection technique pioneered at UCL [4]. This separately correlates the right hand circularly polarized (RHCP) and left hand circularly polarized (LHCP) outputs of a dual-polarization antenna and differences the resulting C/N0 measurements, producing a result that is positive for directly received signals and negative for most NLOS signals. Data was collected at six different sites in Central London and NLOS reception of both GPS and GLONASS signals was detected. Position solutions with the NLOS signals removed are compared with the corresponding all-satellite solutions. The final part of the paper addresses the portfolio approach to NLOS and multipath mitigation. Each technique is assessed qualitatively for its ease of implementation and its efficiency at detecting or directly mitigating both NLOS reception and multipath mitigation. A compatibility matrix is then presented showing which techniques may be combined without conflict. Suitable portfolios are then proposed both for professional-grade and for consumer-grade user equipment. References [1] Groves, P. D., Principles of GNSS, inertial, and multi-sensor integrated navigation systems, Second Edition, Artech House, 2013. [2] Jiang, Z., P. Groves, W. Y. Ochieng, S. Feng, C. D. Milner, and P. G. Mattos, “Multi-Constellation GNSS Multipath Mitigation Using Consistency Checking,” Proc. ION GNSS 2011. [3] Jiang, Z., and P. Groves, “GNSS NLOS and Multipath Error Mitigation using Advanced Multi-Constellation Consistency Checking with Height Aiding,” Proc. ION GNSS 2012. [4] Jiang, Z., and P. D. Groves, “NLOS GPS Signal Detection Using A Dual-Polarisation Antenna,” GPS Solutions, 2012, DOI: 10.1007/s10291-012-0305-5. [5] Hsu, L.-T., P. D. Groves, and S.-S. Jan, “Assessment of the Multipath Mitigation Effect of Vector Tracking in an Urban Environment,” Proc ION Pacific PNT, 2013. [6] Marais, J., M. Berbineau, and M. Heddebaut, “Land Mobile GNSS Availability and Multipath Evaluation Tool,” IEEE Transactions on Vehicular Technology, Vol. 54, No. 5, 2005, pp. 1697-1704. [7] Meguro, J., et al., “GPS Multipath Mitigation for Urban Area Using Omnidirectional Infrared Camera,” IEEE Transactions on Intelligent Transportation Systems, Vol. 10, No. 1, 2009, pp. 22-30. [8] Obst, M., S. Bauer, and G. Wanielik, “Urban Multipath Detection and mitigation with Dynamic 3D Maps for Reliable Land Vehicle Localization,” Proc. IEEE/ION PLANS 2012. [9] Peyraud, S., et al., “About Non-Line-Of-Sight Satellite Detection and Exclusion in a 3D Map-Aided Localization Algorithm,” Sensors, Vol. 13, 2013, pp. 829-847. [10] Keshvadi, M. H., A. Broumandan, and G. Lachapelle, “Analysis of GNSS Beamforming and Angle of Arrival Estimation in Multipath Environments," Proc ION ITM, San Diego, CA, January 2011, pp. 427-435

    Robust Positioning in the Presence of Multipath and NLOS GNSS Signals

    Get PDF
    GNSS signals can be blocked and reflected by nearby objects, such as buildings, walls, and vehicles. They can also be reflected by the ground and by water. These effects are the dominant source of GNSS positioning errors in dense urban environments, though they can have an impact almost anywhere. Non- line-of-sight (NLOS) reception occurs when the direct path from the transmitter to the receiver is blocked and signals are received only via a reflected path. Multipath interference occurs, as the name suggests, when a signal is received via multiple paths. This can be via the direct path and one or more reflected paths, or it can be via multiple reflected paths. As their error characteristics are different, NLOS and multipath interference typically require different mitigation techniques, though some techniques are applicable to both. Antenna design and advanced receiver signal processing techniques can substantially reduce multipath errors. Unless an antenna array is used, NLOS reception has to be detected using the receiver's ranging and carrier-power-to-noise-density ratio (C/N0) measurements and mitigated within the positioning algorithm. Some NLOS mitigation techniques can also be used to combat severe multipath interference. Multipath interference, but not NLOS reception, can also be mitigated by comparing or combining code and carrier measurements, comparing ranging and C/N0 measurements from signals on different frequencies, and analyzing the time evolution of the ranging and C/N0 measurements

    Radio frequency interference detection and mitigation techniques for navigation and Earth observation

    Get PDF
    Radio-Frequency Interference (RFI) signals are undesired signals that degrade or disrupt the performance of a wireless receiver. RFI signals can be troublesome for any receiver, but they are especially threatening for applications that use very low power signals. This is the case of applications that rely on the Global Navigation Satellite Systems (GNSS), or passive microwave remote sensing applications such as Microwave Radiometry (MWR) and GNSS-Reflectometry (GNSS-R). In order to solve the problem of RFI, RFI-countermeasures are under development. This PhD thesis is devoted to the design, implementation and test of innovative RFI-countermeasures in the fields of MWR and GNSS. In the part devoted to RFI-countermeasures for MWR applications, first, this PhD thesis completes the development of the MERITXELL instrument. The MERITXELL is a multi-frequency total-power radiometer conceived to be an outstanding platform to perform detection, characterization, and localization of RFI signals at the most common MWR imaging bands up to 92 GHz. Moreover, a novel RFI mitigation technique is proposed for MWR: the Multiresolution Fourier Transform (MFT). An assessment of the performance of the MFT has been carried out by comparison with other time-frequency mitigation techniques. According to the results, the MFT technique is a good trade-off solution among all other techniques since it can mitigate efficiently all kinds of RFI signals under evaluation. In the part devoted to RFI-countermeasures for GNSS and GNSS-R applications, first, a system for RFI detection and localization at GNSS bands is proposed. This system is able to detect RFI signals at the L1 band with a sensitivity of -108 dBm at full-band, and of -135 dBm for continuous wave and chirp-like signals when using the averaged spectrum technique. Besides, the Generalized Spectral Separation Coefficient (GSSC) is proposed as a figure of merit to evaluate the Signal-to-Noise Ratio (SNR) degradation in the Delay-Doppler Maps (DDMs) due to the external RFI effect. Furthermore, the FENIX system has been conceived as an innovative system for RFI detection and mitigation and anti-jamming for GNSS and GNSS-R applications. FENIX uses the MFT blanking as a pre-correlation excision tool to perform the mitigation. In addition, FENIX has been designed to be cross-GNSS compatible and RFI-independent. The principles of operation of the MFT blanking algorithm are assessed and compared with other techniques for GNSS signals. Its performance as a mitigation tool is proven using GNSS-R data samples from a real airborne campaign. After that, the main building blocks of the patented architecture of FENIX have been described. The FENIX architecture has been implemented in three real-time prototypes. Moreover, a simulator named FENIX-Sim allows for testing its performance under different jamming scenarios. The real-time performance of FENIX prototype has been tested using different setups. First, a customized VNA has been built in order to measure the transfer function of FENIX in the presence of several representative RFI/jamming signals. The results show how the power transfer function adapts itself to mitigate the RFI/jamming signal. Moreover, several real-time tests with GNSS receivers have been performed using GPS L1 C/A, GPS L2C, and Galileo E1OS. The results show that FENIX provides an extra resilience against RFI and jamming signals up to 30 dB. Furthermore, FENIX is tested using a real GNSS timing setup. Under nominal conditions, when no RFI/jamming signal is present, a small additional jitter on the order of 2-4 ns is introduced in the system. Besides, a maximum bias of 45 ns has been measured under strong jamming conditions (-30 dBm), which is acceptable for current timing systems requiring accuracy levels of 100 ns. Finally, the design of a backup system for GNSS in tracking applications that require high reliability against RFI and jamming attacks is proposed.Les interferències de radiofreqüència (RFI) són senyals no desitjades que degraden o interrompen el funcionament dels receptors sense fils. Les RFI poden suposar un problema per qualsevol receptor, però són especialment amenaçadores per les a aplicacions que fan servir senyals de molt baixa potència. Aquest és el cas de les aplicacions que depenen dels sistemes mundials de navegació per satèl·lit (GNSS) o de les aplicacions de teledetecció passiva de microones, com la radiometria de microones (MWR) i la reflectometria GNSS (GNSS-R). Per combatre aquest problema, sistemes anti-RFI s'estan desenvolupament actualment. Aquesta tesi doctoral està dedicada al disseny, la implementació i el test de sistemes anti-RFI innovadors en els camps de MWR i GNSS. A la part dedicada als sistemes anti-RFI en MWR, aquesta tesi doctoral completa el desenvolupament de l'instrument MERITXELL. El MERITXELL és un radiòmetre multifreqüència concebut com una plataforma excepcional per la detecció, caracterització i localització de RFI a les bandes de MWR més utilitzades per sota dels 92 GHz. A més a més, es proposa una nova tècnica de mitigació de RFI per MWR: la Transformada de Fourier amb Multiresolució (MFT). El funcionament de la MFT s'ha comparat amb el d'altres tècniques de mitigació en els dominis del temps i la freqüència. D'acord amb els resultats obtinguts, la MFT és una bona solució de compromís entre les altres tècniques, ja que pot mitigar de manera eficient tots els tipus de senyals RFI considerats. A la part dedicada als sistemes anti-RFI en GNSS i GNSS-R, primer es proposa un sistema per a la detecció i localització de RFI a les bandes GNSS. Aquest sistema és capaç de detectar senyals RFI a la banda L1 amb una sensibilitat de -108 dBm a tota la banda, i de -135 dBm per a senyals d'ona contínua i chirp fen un mitjana de l'espectre. A més a més, el Coeficient de Separació Espectral Generalitzada (GSSC) es proposa com una mesura per avaluar la degradació de la relació senyal a soroll (SNR) en els Mapes de Delay-Doppler (DDM) a causa del impacte de les RFI. La major contribució d'aquesta tesi doctoral és el sistema FENIX. FENIX és un sistema innovador de detecció i mitigació de RFI i inhibidors de freqüència per aplicacions GNSS i GNSS-R. FENIX utilitza la MFT per eliminar la interferència abans del procés de correlació amb el codi GNSS independentment del tipus de RFI. L'algoritme de mitigació de FENIX s'ha avaluat i comparat amb altres tècniques i els principals components de la seva arquitectura patentada es descriuen. Finalment, un simulador anomenat FENIX-Sim permet avaluar el seu rendiment en diferents escenaris d'interferència. El funcionament en temps real del prototip FENIX ha estat provat utilitzant diferents mètodes. En primer lloc, s'ha creat un analitzador de xarxes per a mesurar la funció de transferència del FENIX en presència de diverses RFI representatives. Els resultats mostren com la funció de transferència s'adapta per mitigar el senyal interferent. A més a més, s'han realitzat diferents proves en temps real amb receptors GNSS compatibles amb els senyals GPS L1 C/A, GPS L2C i Galileo E1OS. Els resultats mostren que FENIX proporciona una resistència addicional contra les RFI i els senyals dels inhibidors de freqüència de fins a 30 dB. A més a més, FENIX s'ha provat amb un sistema comercial de temporització basat en GNSS. En condicions nominals, sense RFI, FENIX introdueix un petit error addicional de tan sols 2-4 ns. Per contra, el biaix màxim mesurat en condicions d'alta interferència (-30 dBm) és de 45 ns, el qual és acceptable per als sistemes de temporització actuals que requereixen nivells de precisió d'uns 100 ns. Finalment, es proposa el disseny d'un sistema robust de seguiment, complementari als GNSS, per a aplicacions que requereixen alta fiabilitat contra RFI.Postprint (published version

    GNSS array-based acquisition: theory and implementation

    Get PDF
    This Dissertation addresses the signal acquisition problem using antenna arrays in the general framework of Global Navigation Satellite Systems (GNSS) receivers. The term GNSS classi es those navigation systems based on a constellation of satellites, which emit ranging signals useful for positioning. Although the American GPS is already available, which coexists with the renewed Russian Glonass, the forthcoming European contribution (Galileo) along with the Chinese Compass will be operative soon. Therefore, a variety of satellite constellations and signals will be available in the next years. GNSSs provide the necessary infrastructures for a myriad of applications and services that demand a robust and accurate positioning service. The positioning availability must be guaranteed all the time, specially in safety-critical and mission-critical services. Examining the threats against the service availability, it is important to take into account that all the present and the forthcoming GNSSs make use of Code Division Multiple Access (CDMA) techniques. The ranging signals are received with very low precorrelation signal-to-noise ratio (in the order of ���22 dB for a receiver operating at the Earth surface). Despite that the GNSS CDMA processing gain o ers limited protection against Radio Frequency interferences (RFI), an interference with a interference-to-signal power ratio that exceeds the processing gain can easily degrade receivers' performance or even deny completely the GNSS service, specially conventional receivers equipped with minimal or basic level of protection towards RFIs. As a consequence, RFIs (either intentional or unintentional) remain as the most important cause of performance degradation. A growing concern of this problem has appeared in recent times. Focusing our attention on the GNSS receiver, it is known that signal acquisition has the lowest sensitivity of the whole receiver operation, and, consequently, it becomes the performance bottleneck in the presence of interfering signals. A single-antenna receiver can make use of time and frequency diversity to mitigate interferences, even though the performance of these techniques is compromised in low SNR scenarios or in the presence of wideband interferences. On the other hand, antenna arrays receivers can bene t from spatial-domain processing, and thus mitigate the e ects of interfering signals. Spatial diversity has been traditionally applied to the signal tracking operation of GNSS receivers. However, initial tracking conditions depend on signal acquisition, and there are a number of scenarios in which the acquisition process can fail as stated before. Surprisingly, to the best of our knowledge, the application of antenna arrays to GNSS signal acquisition has not received much attention. This Thesis pursues a twofold objective: on the one hand, it proposes novel arraybased acquisition algorithms using a well-established statistical detection theory framework, and on the other hand demonstrates both their real-time implementation feasibility and their performance in realistic scenarios. The Dissertation starts with a brief introduction to GNSS receivers fundamentals, providing some details about the navigation signals structure and the receiver's architecture of both GPS and Galileo systems. It follows with an analysis of GNSS signal acquisition as a detection problem, using the Neyman-Pearson (NP) detection theory framework and the single-antenna acquisition signal model. The NP approach is used here to derive both the optimum detector (known as clairvoyant detector ) and the sov called Generalized Likelihood Ratio Test (GLRT) detector, which is the basis of almost all of the current state-of-the-art acquisition algorithms. Going further, a novel detector test statistic intended to jointly acquire a set of GNSS satellites is obtained, thus reducing both the acquisition time and the required computational resources. The eff ects of the front-end bandwidth in the acquisition are also taken into account. Then, the GLRT is extended to the array signal model to obtain an original detector which is able to mitigate temporally uncorrelated interferences even if the array is unstructured and moderately uncalibrated, thus becoming one of the main contributions of this Dissertation. The key statistical feature is the assumption of an arbitrary and unknown covariance noise matrix, which attempts to capture the statistical behavior of the interferences and other non-desirable signals, while exploiting the spatial dimension provided by antenna arrays. Closed form expressions for the detection and false alarm probabilities are provided. Performance and interference rejection capability are modeled and compared both to their theoretical bound. The proposed array-based acquisition algorithm is also compared to conventional acquisition techniques performed after blind null-steering beamformer approaches, such as the power minimization algorithm. Furthermore, the detector is analyzed under realistic conditions, accounting for the presence of errors in the covariance matrix estimation, residual Doppler and delay errors, and signal quantization e ects. Theoretical results are supported by Monte Carlo simulations. As another main contribution of this Dissertation, the second part of the work deals with the design and the implementation of a novel Field Programmable Gate Array (FPGA)-based GNSS real-time antenna-array receiver platform. The platform is intended to be used as a research tool tightly coupled with software de ned GNSS receivers. A complete signal reception chain including the antenna array and the multichannel phase-coherent RF front-end for the GPS L1/ Galileo E1 was designed, implemented and tested. The details of the digital processing section of the platform, such as the array signal statistics extraction modules, are also provided. The design trade-o s and the implementation complexities were carefully analyzed and taken into account. As a proof-of-concept, the problem of GNSS vulnerability to interferences was addressed using the presented platform. The array-based acquisition algorithms introduced in this Dissertation were implemented and tested under realistic conditions. The performance of the algorithms were compared to single antenna acquisition techniques, measured under strong in-band interference scenarios, including narrow/wide band interferers and communication signals. The platform was designed to demonstrate the implementation feasibility of novel array-based acquisition algorithms, leaving the rest of the receiver operations (mainly, tracking, navigation message decoding, code and phase observables, and basic Position, Velocity and Time (PVT) solution) to a Software De ned Radio (SDR) receiver running in a personal computer, processing in real-time the spatially- ltered signal sample stream coming from the platform using a Gigabit Ethernet bus data link. In the last part of this Dissertation, we close the loop by designing and implementing such software receiver. The proposed software receiver targets multi-constellation/multi-frequency architectures, pursuing the goals of e ciency, modularity, interoperability, and exibility demanded by user domains that require non-standard features, such as intermediate signals or data extraction and algorithms interchangeability. In this context, we introduce an open-source, real-time GNSS software de ned receiver (so-named GNSS-SDR) that contributes with several novel features such as the use of software design patterns and shared memory techniques to manage e ciently the data ow between receiver blocks, the use of hardware-accelerated instructions for time-consuming vector operations like carrier wipe-o and code correlation, and the availability to compile and run on multiple software platforms and hardware architectures. At this time of writing (April 2012), the receiver enjoys of a 2-dimensional Distance Root Mean Square (DRMS) error lower than 2 meters for a GPS L1 C/A scenario with 8 satellites in lock and a Horizontal Dilution Of Precision (HDOP) of 1.2.Esta tesis aborda el problema de la adquisición de la señal usando arrays de antenas en el marco general de los receptores de Sistemas Globales de Navegación por Satélite (GNSS). El término GNSS engloba aquellos sistemas de navegación basados en una constelación de satélites que emiten señales útiles para el posicionamiento. Aunque el GPS americano ya está disponible, coexistiendo con el renovado sistema ruso GLONASS, actualmente se está realizando un gran esfuerzo para que la contribución europea (Galileo), junto con el nuevo sistema chino Compass, estén operativos en breve. Por lo tanto, una gran variedad de constelaciones de satélites y señales estarán disponibles en los próximos años. Estos sistemas proporcionan las infraestructuras necesarias para una multitud de aplicaciones y servicios que demandan un servicio de posicionamiento confiable y preciso. La disponibilidad de posicionamiento se debe garantizar en todo momento, especialmente en los servicios críticos para la seguridad de las personas y los bienes. Cuando examinamos las amenazas de la disponibilidad del servicio que ofrecen los GNSSs, es importante tener en cuenta que todos los sistemas presentes y los sistemas futuros ya planificados hacen uso de técnicas de multiplexación por división de código (CDMA). Las señales transmitidas por los satélites son recibidas con una relación señal-ruido (SNR) muy baja, medida antes de la correlación (del orden de -22 dB para un receptor ubicado en la superficie de la tierra). A pesar de que la ganancia de procesado CDMA ofrece una protección inherente contra las interferencias de radiofrecuencia (RFI), esta protección es limitada. Una interferencia con una relación de potencia de interferencia a potencia de la señal que excede la ganancia de procesado puede degradar el rendimiento de los receptores o incluso negar por completo el servicio GNSS. Este riesgo es especialmente importante en receptores convencionales equipados con un nivel mínimo o básico de protección frente las RFIs. Como consecuencia, las RFIs (ya sean intencionadas o no intencionadas), se identifican como la causa más importante de la degradación del rendimiento en GNSS. El problema esta causando una preocupación creciente en los últimos tiempos, ya que cada vez hay más servicios que dependen de los GNSSs Si centramos la atención en el receptor GNSS, es conocido que la adquisición de la señal tiene la menor sensibilidad de todas las operaciones del receptor, y, en consecuencia, se convierte en el factor limitador en la presencia de señales interferentes. Un receptor de una sola antena puede hacer uso de la diversidad en tiempo y frecuencia para mitigar las interferencias, aunque el rendimiento de estas técnicas se ve comprometido en escenarios con baja SNR o en presencia de interferencias de banda ancha. Por otro lado, los receptores basados en múltiples antenas se pueden beneficiar del procesado espacial, y por lo tanto mitigar los efectos de las señales interferentes. La diversidad espacial se ha aplicado tradicionalmente a la operación de tracking de la señal en receptores GNSS. Sin embargo, las condiciones iniciales del tracking dependen del resultado de la adquisición de la señal, y como hemos visto antes, hay un número de situaciones en las que el proceso de adquisición puede fallar. En base a nuestro grado de conocimiento, la aplicación de los arrays de antenas a la adquisición de la señal GNSS no ha recibido mucha atención, sorprendentemente. El objetivo de esta tesis doctoral es doble: por un lado, proponer nuevos algoritmos para la adquisición basados en arrays de antenas, usando como marco la teoría de la detección de señal estadística, y por otro lado, demostrar la viabilidad de su implementación y ejecución en tiempo real, así como su medir su rendimiento en escenarios realistas. La tesis comienza con una breve introducción a los fundamentos de los receptores GNSS, proporcionando algunos detalles sobre la estructura de las señales de navegación y la arquitectura del receptor aplicada a los sistemas GPS y Galileo. Continua con el análisis de la adquisición GNSS como un problema de detección, aplicando la teoría del detector Neyman-Pearson (NP) y el modelo de señal de una única antena. El marco teórico del detector NP se utiliza aquí para derivar tanto el detector óptimo (conocido como detector clarividente) como la denominada Prueba Generalizada de la Razón de Verosimilitud (en inglés, Generalized Likelihood Ratio Test (GLRT)), que forma la base de prácticamente todos los algoritmos de adquisición del estado del arte actual. Yendo más lejos, proponemos un nuevo detector diseñado para adquirir simultáneamente un conjunto de satélites, por lo tanto, obtiene una reducción del tiempo de adquisición y de los recursos computacionales necesarios en el proceso, respecto a las técnicas convencionales. El efecto del ancho de banda del receptor también se ha tenido en cuenta en los análisis. A continuación, el detector GLRT se extiende al modelo de señal de array de antenas para obtener un detector nuevo que es capaz de mitigar interferencias no correladas temporalmente, incluso utilizando arrays no estructurados y moderadamente descalibrados, convirtiéndose así en una de las principales aportaciones de esta tesis. La clave del detector es asumir una matriz de covarianza de ruido arbitraria y desconocida en el modelo de señal, que trata de captar el comportamiento estadístico de las interferencias y otras señales no deseadas, mientras que utiliza la dimensión espacial proporcionada por los arrays de antenas. Se han derivado las expresiones que modelan las probabilidades teóricas de detección y falsa alarma. El rendimiento del detector y su capacidad de rechazo a interferencias se han modelado y comparado con su límite teórico. El algoritmo propuesto también ha sido comparado con técnicas de adquisición convencionales, ejecutadas utilizando la salida de conformadores de haz que utilizan algoritmos de filtrado de interferencias, como el algoritmo de minimización de la potencia. Además, el detector se ha analizado bajo condiciones realistas, representadas con la presencia de errores en la estimación de covarianzas, errores residuales en la estimación del Doppler y el retardo de señal, y los efectos de la cuantificación. Los resultados teóricos se apoyan en simulaciones de Monte Carlo. Como otra contribución principal de esta tesis, la segunda parte del trabajo trata sobre el diseño y la implementación de una nueva plataforma para receptores GNSS en tiempo real basados en array de antenas que utiliza la tecnología de matriz programable de puertas lógicas (en ingles Field Programmable Gate Array (FPGA)). La plataforma está destinada a ser utilizada como una herramienta de investigación estrechamente acoplada con receptores GNSS definidos por software. Se ha diseñado, implementado y verificado la cadena completa de recepción, incluyendo el array de antenas y el front-end multi-canal para las señales GPS L1 y Galileo E1. El documento explica en detalle el procesado de señal que se realiza, como por ejemplo, la implementación del módulo de extracción de estadísticas de la señal. Los compromisos de diseño y las complejidades derivadas han sido cuidadosamente analizadas y tenidas en cuenta. La plataforma ha sido utilizada como prueba de concepto para solucionar el problema presentado de la vulnerabilidad del GNSS a las interferencias. Los algoritmos de adquisición introducidos en esta tesis se han implementado y probado en condiciones realistas. El rendimiento de los algoritmos se comparó con las técnicas de adquisición basadas en una sola antena. Se han realizado pruebas en escenarios que contienen interferencias dentro de la banda GNSS, incluyendo interferencias de banda estrecha y banda ancha y señales de comunicación. La plataforma fue diseñada para demostrar la viabilidad de la implementación de nuevos algoritmos de adquisición basados en array de antenas, dejando el resto de las operaciones del receptor (principalmente, los módulos de tracking, decodificación del mensaje de navegación, los observables de código y fase, y la solución básica de Posición, Velocidad y Tiempo (PVT)) a un receptor basado en el concepto de Radio Definida por Software (SDR), el cual se ejecuta en un ordenador personal. El receptor procesa en tiempo real las muestras de la señal filltradas espacialmente, transmitidas usando el bus de datos Gigabit Ethernet. En la última parte de esta Tesis, cerramos ciclo diseñando e implementando completamente este receptor basado en software. El receptor propuesto está dirigido a las arquitecturas de multi-constalación GNSS y multi-frecuencia, persiguiendo los objetivos de eficiencia, modularidad, interoperabilidad y flexibilidad demandada por los usuarios que requieren características no estándar, tales como la extracción de señales intermedias o de datos y intercambio de algoritmos. En este contexto, se presenta un receptor de código abierto que puede trabajar en tiempo real, llamado GNSS-SDR, que contribuye con varias características nuevas. Entre ellas destacan el uso de patrones de diseño de software y técnicas de memoria compartida para administrar de manera eficiente el uso de datos entre los bloques del receptor, el uso de la aceleración por hardware para las operaciones vectoriales más costosas, como la eliminación de la frecuencia Doppler y la correlación de código, y la disponibilidad para compilar y ejecutar el receptor en múltiples plataformas de software y arquitecturas de hardware. A fecha de la escritura de esta Tesis (abril de 2012), el receptor obtiene un rendimiento basado en la medida de la raíz cuadrada del error cuadrático medio en la distancia bidimensional (en inglés, 2-dimensional Distance Root Mean Square (DRMS) error) menor de 2 metros para un escenario GPS L1 C/A con 8 satélites visibles y una dilución de la precisión horizontal (en inglés, Horizontal Dilution Of Precision (HDOP)) de 1.2

    Multipath mitigation technique under strong multipath environment using multiple antennas

    Get PDF
    2016-2017 > Academic research: refereed > Publication in refereed journal201804_a bcmaVersion of RecordPublishe

    NLOS GPS signal detection using a dual-polarisation antenna

    Get PDF
    The reception of indirect signals, either in the form of non-line-of-sight (NLOS) reception or multipath interference, is a major cause of GNSS position errors in urban environments. We explore the potential of using dual-polarisation antenna technology for detecting and mitigating the reception of NLOS signals and severe multipath interference. The new technique computes the value of the carrier-power-to-noise-density (C/N0) measurements from left-hand circular polarised outputs subtracted from the right-hand circular polarised C/N0 counterpart. If this quality is negative, NLOS signal reception is assumed. If the C/N0 difference is positive, but falls below a threshold based on its lower bound in an open-sky environment, severe multipath interference is assumed. Results from two experiments are presented. Open-field testing was first performed to characterise the antenna behaviour and determine a suitable multipath detection threshold. The techniques were then tested in a dense urban area. Using the new method, two signals in the urban data were identified as NLOS-only reception during the occupation period at one station, while the majority of the remaining signals present were subject to a mixture of NLOS reception and severe multipath interference. The point positioning results were dramatically improved by excluding the detected NLOS measurements. The new technique is suited to a wide range of static ground applications based on our results

    Radio Frequency Interference Impact Assessment on Global Navigation Satellite Systems

    Get PDF
    The Institute for the Protection and Security of the Citizen of the EC Joint Research Centre (IPSC-JRC) has been mandated to perform a study on the Radio Frequency (RF) threat against telecommunications and ICT control systems. This study is divided into two parts. The rst part concerns the assessment of high energy radio frequency (HERF) threats, where the focus is on the generation of electromagnetic pulses (EMP), the development of corresponding devices and the possible impact on ICT and power distribution systems. The second part of the study concerns radio frequency interference (RFI) with regard to global navigation satellite systems (GNSS). This document contributes to the second part and contains a detailed literature study disclosing the weaknesses of GNSS systems. Whereas the HERF analysis only concerns intentional interference issues, this study on GNSS also takes into account unintentional interference, enlarging the spectrum of plausible interference scenarios.JRC.DG.G.6-Security technology assessmen
    corecore