61 research outputs found

    Scanning electron microscope image signal-to-noise ratio monitoring for micro-nanomanipulation.

    No full text
    International audienceAs an imaging system, scanning electron microscope (SEM) performs an important role in autonomous micro-nanomanipulation applications. When it comes to the sub micrometer range and at high scanning speeds, the images produced by the SEM are noisy and need to be evaluated or corrected beforehand. In this article, the quality of images produced by a tungsten gun SEM has been evaluated by quantifying the level of image signal-to-noise ratio (SNR). In order to determine the SNR, an efficient and online monitoring method is developed based on the nonlinear filtering using a single image. Using this method, the quality of images produced by a tungsten gun SEM is monitored at different experimental conditions. The derived results demonstrate the developed method's efficiency in SNR quantification and illustrate the imaging quality evolution in SEM

    Fast Image Drift Compensation in Scanning Electron Microscope using Image Registration.

    No full text
    International audienceScanning Electron Microscope (SEM) image acquisition is mostly affected by the time varying motion of pixel positions in the consecutive images, a phenomenon called drift. In order to perform accurate measurements using SEM, it is necessary to compensate this drift in advance. Most of the existing drift compensation methods were developed using the image correlation technique. In this paper, we present an image registration-based drift compensation method, where the correction on the distorted image is performed by computing the homography, using the keypoint correspondences between the images. Four keypoint detection algorithms have been used for this work. The obtained experimental results demonstrate the method's performance and efficiency in comparison with the correlation technique

    Development of novel high-performance six-axis magnetically levitated instruments for nanoscale applications

    Get PDF
    This dissertation presents two novel 6-axis magnetic-levitation (maglev) stages that are capable of nanoscale positioning. These stages have very simple and compact structure that is advantageous to meet requirements in the next-generation nanomanufacturing. The 6-axis motion generation is accomplished by the minimum number of actuators and sensors. The first-generation maglev stage is capable of generating translation of 300 ??m in x, y and z, and rotation of 3 mrad about the three orthogonal axes. The stage demonstrates position resolution better than 5 nm rms and position noise less than 2 nm rms. It has a light moving-part mass of 0.2126 kg. The total power consumption by all the actuators is only around a watt. Experimental results show that the stage can carry, orient, and precisely position an additional payload as heavy as 0.3 kg. The second-generation maglev stage is capable of positioning at the resolution of a few nanometers over a planar travel range of several millimeters. A novel actuation scheme was developed for the compact design of this stage that enables 6-axis force generation with just 3permanent-magnet pieces. Electromagnetic forces were calculated and experimentally verified. The complete design and construction of the second-generation maglev stage was performed. All the mechanical part and assembly fixtures were designed and fabricated at the mechanical engineering machine shop. The single moving part is modeled as a pure mass due to the negligible effect of the magnetic spring and damping. Classical as well as advanced controllers were designed and implemented for closed-loop feedback control. A nonlinear model of the force was developed and applied to cancel the nonlinearity of the actuators over the large travel range. Various experiments were conducted to test positioning, loading, and vibration-isolation capabilities. This maglev stage has a moving-part mass of 0.267 kg. Its position resolution is 4 nm over a travel range of 5 ?? 5 mm in the x-y plane. Its actuators are designed to carry and precisely position an additional payload of 2 kg. Its potential applications include semiconductor manufacturing, micro-fabrication and assembly, nanoscale profiling, and nano-indentation

    Nano handling and measurement of biological cells in culture

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfillment of the requirements for the degree of Doctor of PhilosophyThis thesis systematically investigates the nano handling and measurement techniques for biological cells in culture and studies the techniques to realize innovative and multi-functional applications in biomedicine. Among them, the technique based on AFM is able to visualize and quantify the dynamics of organic cells in culture on the nano scale. Especially, the cellular shear adhesion force on the various locations of biological cells was firstly accurately measured in the research of the cell-substrate interaction in terms of biophysical perspective. The innovative findings are conductive to study the cell-cell adhesion, the cell-matrix adhesion which is related to the cell morphology structure, function, deformation ability and adhesion of cells and better understand the cellular dynamic behaviors. Herein, a new liquid-AFM probe unit and an increment PID control algorithm were implemented suitable for scanning the cell samples under the air conditions and the liquid environments. The influence between the surface of sample and the probe, and the damage of probe during the sample scanning were reduced. The proposed system is useful for the nano handling and measurement of living cells. Besides, Besides, to overcome the limitations of liquid-AFMs, the multiple optical tweezers were developed to integrate with the liquid-AFM. The technique based on laser interference is able to characterize the optical trap stiffness and the escape velocity, especially to realize the capture and sorting of multiple cells by a polarization-controlled periodic laser interference. It can trap and move hundreds of cells without physical contact, and has broad application prospects in cytology. Herein, a new experimental method integrated with the positioning analysis in the Z direction was used to improve the fluid force method for the calibration and characterize the mechanical forces exerted on optical traps and living cells. Moreover, a sensitive and highly efficient polarization-controlled three-beam interference set-up was developed for the capture and sorting of multiple cells. By controlling the polarization angles of the beams, various intensity distributions and different sizes of dots were obtained. Subsequently, we have experimentally observed multiple optical tweezers and the sorting of cells with different polarization angles, which are in accordance with the theoretical analysis

    Algorithmic approaches to high speed atomic force microscopy

    Full text link
    Thesis (Ph.D.)--Boston UniversityThe atomic force microscope (AFM) has a unique set of capabilities for investigating biological systems, including sub-nanometer spatial resolution and the ability to image in liquid and to measure mechanical properties. Acquiring a high quality image, however, can take from minutes to hours. Despite this limited frame rate, researchers use the instrument to investigate dynamics via time-lapse imaging, driven by the need to understand biomolecular activities at the molecular level. Studies of processes such as DNA digestion with DNase, DNA-RNA polymerase binding and RNA transcription from DNA by RNA polymerase redefined the potential of AFM in biology. As a result of the need for better temporal resolution, advanced AFMs have been developed. The current state of the art in high-speed AFM (HS-AFM) for biological studies is an instrument developed by Toshio Ando at Kanazawa University in Japan. This instrument can achieve 12 frames/sec and has successfully visualized the motion of protein motors at the molecular level. This impressive instrument as well as other advanced AFMs, however, comes with tradeoffs that include a small scan size, limited imaging modes and very high cost. As a result, most AFM users still rely on standard commercial AFMs. The work in this thesis develops algorithmic approaches that can be implemented on existing instruments, from standard commercial systems to cutting edge HS-AFM units, to enhance their capabilities. There are four primary contributions in this thesis. The first is an analysis of the signals available in an AFM with respect to the information they carry and their suitability for imaging at different scan speeds. The next two are algorithmic approaches to HS-AFM that take advantage of these signals in different ways. The first algorithm involves a new sample profile estimator that yields accurate topology at speeds beyond the bandwidth of the limiting actuator. The second involves more efficient sampling, using the data in real time to steer the tip. Both algorithms yield at least an order of magnitude improvement in imaging rate but with different tradeoffs. The first operates beyond the bandwidth of the controller managing the tip-sample interaction and therefore the applied force is not well-regulated. The second keeps this control intact but is effective only on a limited set of samples, namely biopolymers or other string-like samples. Experiments on calibration samples and λ-DNA show that both of the algorithms improve the imaging rate by an order of magnitude. In the fourth contribution, extended applications of AFMs equipped with the algorithmic approaches are the tracking of a macromolecule moving along a string-like sample and a time optimal path for repetitive non-raster scans along string-like samples

    Focused electron- and ion-beam induced processes:in situ monitoring, analysis and modeling

    Get PDF
    Focused electron- and ion-beam induced processing are well established techniques for local deposition and etching that rely on decomposition of precursor molecules by irradiation. These high-resolution nanostructuring techniques have various applications in nanoscience including attach-and-release procedures in nanomanipulation and fabrication of sensors (magnetic, optical and thermal) for scanning probe microscopy. However, a complete physical and chemical understanding of the process is hampered by the lack of suitable means to monitor and to access the numerous interrelated and time-varying process parameters (deposition and etch rate, yield, molecule flux and adsorption/desorption). This thesis is a first attempt to fill this gap. It is based on experimental and simulative approaches for the determination of process conditions and mechanical properties of deposited materials: Mass and force sensors: The use of tools merging micromechanical cantilever sensors and scanning electron microscopy was demonstrated for in situ monitoring and analysis. A cantilever-based resonant mass sensing setup was developed and used for real-time mass measurements. A noise level at the femtogram-scale was achieved by tracking the resonance frequency of a temperature stabilized piezoresistive cantilever using phase-locking. With this technique the surface coverage and residence time of (CH3)3PtCpCH3 molecules, the mass deposition rate, the yield, and the material density of corresponding deposits were measured. In situ cantilever-based static force sensing and mechanical modal vibration analysis were employed to investigate the Young's modulus and density of individual high aspect ratio deposits from the precursor Cu(hfac)2. Precursor supply simulations and experiments: A prerequisite to understand and quantify irradiative precursor chemistry is the knowledge of the local flux of molecules impinging on the substrate. Therefore, Monte Carlo simulations of flux distributions were developed and gas flows injected into a vacuum chamber were analyzed experimentally for the precursors Co2(CO)8, (hfac)CuVTMS, and [(PF3)2RhCl]2. The process parameters extracted from the mentioned approaches are valuable input for numerical focused electron- and ion-beam induced process models (Monte Carlo, continuum). We evaluated the precursor surface diffusion coefficient and the electron impact dissociation cross-section by relating deposit shapes to a continuum model

    Design, Fabrication, Testing of CNT Based ISFET and Characterization of Nano/Bio Materials Using AFM

    Get PDF
    A combination of Carbon Nanotubes (CNTs) and Ion Selective Field Effect Transistor (ISFET) is designed and experimentally verified in order to develop the next generation ion concentration sensing system. Micro Electro-Mechanical System (MEMS) fabrication techniques, such as photolithography, diffusion, evaporation, lift-off, packaging, etc., are required in the fabrication of the CNT-ISFET structure on p-type silicon wafers. In addition, Atomic Force Microscopy (AFM) based surface nanomachining is investigated and used for creating nanochannels on silicon surfaces. Since AFM based nanomanipulation and nanomachining is highly controllable, nanochannels are precisely scratched in the area between the source and drain of the FET where the inversion layer is after the ISFET is activated. Thus, a bundle of CNTs are able to be aligned inside a single nanochannel by Dielectrophoresis (DEP) and the drain current is improved greatly due to CNTs` remarkable and unique electrical properties, for example, high current carrying capacity. ISFET structures with or without CNTs are fabricated and tested with different pH solutions. Besides the CNT-ISFET pH sensing system, this dissertation also presents novel AFM-based nanotechnology for learning the properties of chemical or biomedical samples in micro or nano level. Dimensional and mechanical property behaviors of Vertically Aligned Carbon Nanofibers (VACNFs) are studied after temperature and humidity treatment using AFM. Furthermore, mechanical property testing of biomedical samples, such as microbubbles and engineered soft tissues, using AFM based nanoindentation is introduced, and the methodology is of great directional value in the area

    Quantum metrology and its application in biology

    Full text link
    Quantum metrology provides a route to overcome practical limits in sensing devices. It holds particular relevance to biology, where sensitivity and resolution constraints restrict applications both in fundamental biophysics and in medicine. Here, we review quantum metrology from this biological context, focusing on optical techniques due to their particular relevance for biological imaging, sensing, and stimulation. Our understanding of quantum mechanics has already enabled important applications in biology, including positron emission tomography (PET) with entangled photons, magnetic resonance imaging (MRI) using nuclear magnetic resonance, and bio-magnetic imaging with superconducting quantum interference devices (SQUIDs). In quantum metrology an even greater range of applications arise from the ability to not just understand, but to engineer, coherence and correlations at the quantum level. In the past few years, quite dramatic progress has been seen in applying these ideas into biological systems. Capabilities that have been demonstrated include enhanced sensitivity and resolution, immunity to imaging artifacts and technical noise, and characterization of the biological response to light at the single-photon level. New quantum measurement techniques offer even greater promise, raising the prospect for improved multi-photon microscopy and magnetic imaging, among many other possible applications. Realization of this potential will require cross-disciplinary input from researchers in both biology and quantum physics. In this review we seek to communicate the developments of quantum metrology in a way that is accessible to biologists and biophysicists, while providing sufficient detail to allow the interested reader to obtain a solid understanding of the field. We further seek to introduce quantum physicists to some of the central challenges of optical measurements in biological science.Comment: Submitted review article, comments and suggestions welcom

    Design and realization of a microassembly workstation

    Get PDF
    With the miniaturization of products to the levels of micrometers and the recent developments in microsystem fabrication technologies, there is a great need for an assembly process for the formation of complex hybrid microsystems. Integration of microcomponents made up of different materials and manufactured using different micro fabrication techniques is still a primary challenge since some of the fundamental problems originating from the small size of parts to be manipulated, high precision necessity and specific problems of the microworld in that field are still not fully investigated. In this thesis, design and development of an open-architecture and reconfigurable microassembly workstation for efficient and reliable assembly of micromachined parts is presented. The workstation is designed to be used as a research tool for investigation of the problems in microassembly. The development of such a workstation includes the design of: (i) a manipulation system consisting of motion stages providing necessary travel range and precision for the realization of assembly tasks, (ii) a vision system to visualize the microworld and the determination of the position and orientation of micro components to be assembled, (iii) a robust control system and necessary fixtures for the end effectors that allow easy change of manipulation tools and make the system ready for the desired task. In addition tele-operated and semi-automated assembly concepts are implemented. The design is verified by implementing tasks in various ranges for micro-parts manipulation. The versatility of the workstation is demonstrated and high accuracy of positioning is shown
    • …
    corecore