12 research outputs found

    Prompt-based Grouping Transformer for Nucleus Detection and Classification

    Full text link
    Automatic nuclei detection and classification can produce effective information for disease diagnosis. Most existing methods classify nuclei independently or do not make full use of the semantic similarity between nuclei and their grouping features. In this paper, we propose a novel end-to-end nuclei detection and classification framework based on a grouping transformer-based classifier. The nuclei classifier learns and updates the representations of nuclei groups and categories via hierarchically grouping the nucleus embeddings. Then the cell types are predicted with the pairwise correlations between categorical embeddings and nucleus features. For the efficiency of the fully transformer-based framework, we take the nucleus group embeddings as the input prompts of backbone, which helps harvest grouping guided features by tuning only the prompts instead of the whole backbone. Experimental results show that the proposed method significantly outperforms the existing models on three datasets.Comment: MICCAI 2023, released code: https://github.com/lhaof/PG

    A Deep Learning-Based System (Microscan) for the Identification of Pollen Development Stages and Its Application to Obtaining Doubled Haploid Lines in Eggplant

    Full text link
    [EN] The development of double haploids (DHs) is a straightforward path for obtaining pure lines but has multiple bottlenecks. Among them is the determination of the optimal stage of pollen induction for androgenesis. In this work, we developed Microscan, a deep learning-based system for the detection and recognition of the stages of pollen development. In a first experiment, the algorithm was developed adapting the RetinaNet predictive model using microspores of different eggplant accessions as samples. A mean average precision of 86.30% was obtained. In a second experiment, the anther range to be cultivated in vitro was determined in three eggplant genotypes by applying the Microscan system. Subsequently, they were cultivated following two different androgenesis protocols (Cb and E6). The response was only observed in the anther size range predicted by Microscan, obtaining the best results with the E6 protocol. The plants obtained were characterized by flow cytometry and with the Single Primer Enrichment Technology high-throughput genotyping platform, obtaining a high rate of confirmed haploid and double haploid plants. Microscan has been revealed as a tool for the high-throughput efficient analysis of microspore samples, as it has been exemplified in eggplant by providing an increase in the yield of DHs production.This research was funded by the Spanish Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigacion and Fondo Europeo de Desarrollo Regional (grant RTI-2018-094592-B-I00 from MCIU/AEI/FEDER, UE). This work was also undertaken as part of the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives", which is supported by the Government of Norway. The project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew, and implemented in partnership with national and international gene banks and plant breeding institutes around the world. For further information, see the project website: http://www.cwrdiversity.org/.The Spanish Ministerio de Educacion, Cultura y Deporte funded a predoctoral fellowship granted to Edgar Garcia-Fortea (FPU17/02389).García-Fortea, E.; García-Pérez, A.; Gimeno -Páez, E.; Sánchez-Gimeno, A.; Vilanova Navarro, S.; Prohens Tomás, J.; Pastor-Calle, D. (2020). A Deep Learning-Based System (Microscan) for the Identification of Pollen Development Stages and Its Application to Obtaining Doubled Haploid Lines in Eggplant. Biology. 9(9):1-19. https://doi.org/10.3390/biology9090272S11999Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9Acquaah, G. (2012). Principles of Plant Genetics and Breeding. doi:10.1002/9781118313718Salim, M., Gökçe, A., Naqqash, M. N., & Bakhsh, A. (2020). Gene Pyramiding: An Emerging Control Strategy Against Insect Pests of Agronomic Crops. Agronomic Crops, 285-312. doi:10.1007/978-981-15-0025-1_16Jonas, E., & de Koning, D.-J. (2013). Does genomic selection have a future in plant breeding? Trends in Biotechnology, 31(9), 497-504. doi:10.1016/j.tibtech.2013.06.003Ahmadi, B., & Ebrahimzadeh, H. (2020). In vitro androgenesis: spontaneous vs. artificial genome doubling and characterization of regenerants. Plant Cell Reports, 39(3), 299-316. doi:10.1007/s00299-020-02509-zKumar, K. R., Singh, K. P., Bhatia, R., Raju, D. V. S., & Panwar, S. (2019). Optimising protocol for successful development of haploids in marigold (Tagetes spp.) through in vitro androgenesis. Plant Cell, Tissue and Organ Culture (PCTOC), 138(1), 11-28. doi:10.1007/s11240-019-01598-3Lantos, C., Bóna, L., Nagy, É., Békés, F., & Pauk, J. (2018). Induction of in vitro androgenesis in anther and isolated microspore culture of different spelt wheat (Triticum spelta L.) genotypes. Plant Cell, Tissue and Organ Culture (PCTOC), 133(3), 385-393. doi:10.1007/s11240-018-1391-zWarchoł, M., Czyczyło-Mysza, I., Marcińska, I., Dziurka, K., Noga, A., Kapłoniak, K., … Skrzypek, E. (2019). Factors inducing regeneration response in oat (Avena sativa L.) anther culture. In Vitro Cellular & Developmental Biology - Plant, 55(5), 595-604. doi:10.1007/s11627-019-09987-1González, J. M., & Jouve, N. (2005). Microspore development during in vitro androgenesis in triticale. Biologia plantarum, 49(1), 23-28. doi:10.1007/s10535-005-3028-4Segui-Simarro, J. M., & Nuez, F. (2007). Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. Journal of Experimental Botany, 58(5), 1119-1132. doi:10.1093/jxb/erl271Seguí-Simarro, J. M., Corral-Martínez, P., Parra-Vega, V., & González-García, B. (2010). Androgenesis in recalcitrant solanaceous crops. Plant Cell Reports, 30(5), 765-778. doi:10.1007/s00299-010-0984-8Rotino, G. L. (1996). Haploidy in eggplant. Current Plant Science and Biotechnology in Agriculture, 115-141. doi:10.1007/978-94-017-1858-5_8Miyoshi, K. (1996). Callus induction and plantlet formation through culture of isolated microspores of eggplant (Solanum melongena L.). Plant Cell Reports, 15(6), 391-395. doi:10.1007/bf00232061Germanà, M. A. (2010). Anther culture for haploid and doubled haploid production. Plant Cell, Tissue and Organ Culture (PCTOC), 104(3), 283-300. doi:10.1007/s11240-010-9852-zSalas, P., Rivas-Sendra, A., Prohens, J., & Seguí-Simarro, J. M. (2011). Influence of the stage for anther excision and heterostyly in embryogenesis induction from eggplant anther cultures. Euphytica, 184(2), 235-250. doi:10.1007/s10681-011-0569-9Salas, P., Prohens, J., & Seguí-Simarro, J. M. (2011). Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica, 182(2). doi:10.1007/s10681-011-0490-2Brinkmann, M., Lütkemeyer, D., Gudermann, F., & Lehmann, J. (2002). Cytotechnology, 38(1/3), 119-127. doi:10.1023/a:1021118501866Väyrynen, J. P., Vornanen, J. O., Sajanti, S., Böhm, J. P., Tuomisto, A., & Mäkinen, M. J. (2012). An improved image analysis method for cell counting lends credibility to the prognostic significance of T cells in colorectal cancer. Virchows Archiv, 460(5), 455-465. doi:10.1007/s00428-012-1232-0Kakui, H., Yamazaki, M., Hamaya, N.-B., & Shimizu, K. K. (2020). Pollen Grain Counting Using a Cell Counter. Methods in Molecular Biology, 1-11. doi:10.1007/978-1-0716-0672-8_1Bologna-Molina, R., Damián-Matsumura, P., & Molina-Frechero, N. (2011). An easy cell counting method for immunohistochemistry that does not use an image analysis program. Histopathology, 59(4), 801-803. doi:10.1111/j.1365-2559.2011.03954.xChoudhry, P. (2016). High-Throughput Method for Automated Colony and Cell Counting by Digital Image Analysis Based on Edge Detection. PLOS ONE, 11(2), e0148469. doi:10.1371/journal.pone.0148469Du, Li, X., & Li, Q. (2019). Detection and Classification of Cervical Exfoliated Cells Based on Faster R-CNN*. 2019 IEEE 11th International Conference on Advanced Infocomm Technology (ICAIT). doi:10.1109/icait.2019.8935931Chowdhury, A. B., Roberson, J., Hukkoo, A., Bodapati, S., & Cappelleri, D. J. (2020). Automated Complete Blood Cell Count and Malaria Pathogen Detection Using Convolution Neural Network. IEEE Robotics and Automation Letters, 5(2), 1047-1054. doi:10.1109/lra.2020.2967290Elgendi, M., Fletcher, R., Howard, N., Menon, C., & Ward, R. (2020). The Evaluation of Deep Neural Networks and X-Ray as a Practical Alternative for Diagnosis and Management of COVID-19. doi:10.1101/2020.05.12.20099481Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollar, P. (2017). Focal Loss for Dense Object Detection. 2017 IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2017.324Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27-48. doi:10.1016/j.neucom.2015.09.116Barchi, L., Acquadro, A., Alonso, D., Aprea, G., Bassolino, L., Demurtas, O., … Giuliano, G. (2019). Single Primer Enrichment Technology (SPET) for High-Throughput Genotyping in Tomato and Eggplant Germplasm. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01005Wu, D. D., Ruban, A., Rutten, T., Zhou, Y. H., & Houben, A. (2019). Analysis of Pollen Grains by Immunostaining and FISH in Triticeae Species. Plant Meiosis, 347-358. doi:10.1007/978-1-4939-9818-0_24James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer Texts in Statistics. doi:10.1007/978-1-4614-7138-7García-Fortea, E., Lluch-Ruiz, A., Pineda-Chaza, B. J., García-Pérez, A., Bracho-Gil, J. P., Plazas, M., … Prohens, J. (2020). A highly efficient organogenesis protocol based on zeatin riboside for in vitro regeneration of eggplant. BMC Plant Biology, 20(1). doi:10.1186/s12870-019-2215-yDUMAS DE VAULX, R., CHAMBONNET, D., & POCHARD, E. (1981). Culture in vitro d’anthères de piment (Capsicum annuum L.) : amélioration des taux d’obtention de plantes chez différents génotypes par des traitements à + 35 °C. Agronomie, 1(10), 859-864. doi:10.1051/agro:19811006Dpooležel, J., Binarová, P., & Lcretti, S. (1989). Analysis of Nuclear DNA content in plant cells by Flow cytometry. Biologia Plantarum, 31(2), 113-120. doi:10.1007/bf02907241Doyle, J. (1991). DNA Protocols for Plants. Molecular Techniques in Taxonomy, 283-293. doi:10.1007/978-3-642-83962-7_18Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. doi:10.1093/bioinformatics/btm308Akbar, S., Martel, A. L., Peikari, M., Salama, S., & Nofech-Mozes, S. (2018). Determining tumor cellularity in digital slides using ResNet. Medical Imaging 2018: Digital Pathology. doi:10.1117/12.2292813Yan, J., Tucci, E., & Jaffe, N. (2019). Detection of t(9;22) Chromosome Translocation Using Deep Residual Neural Network. Journal of Computer and Communications, 07(12), 102-111. doi:10.4236/jcc.2019.712010Malik, M. R., Wang, F., Dirpaul, J. M., Zhou, N., Polowick, P. L., Ferrie, A. M. R., & Krochko, J. E. (2007). Transcript Profiling and Identification of Molecular Markers for Early Microspore Embryogenesis inBrassica napus . Plant Physiology, 144(1), 134-154. doi:10.1104/pp.106.092932Heberle-Bors, E. (1989). Isolated pollen culture in tobacco: plant reproductive development in a nutshell. Sexual Plant Reproduction, 2(1). doi:10.1007/bf00190112Raghavan, V. (1990). From Microspore to Embryoid: Faces of the Angiosperm Pollen Grain. Current Plant Science and Biotechnology in Agriculture, 213-221. doi:10.1007/978-94-009-2103-0_32Makowska, K., & Oleszczuk, S. (2013). Albinism in barley androgenesis. Plant Cell Reports, 33(3), 385-392. doi:10.1007/s00299-013-1543-xImmonen, S., & Anttila, H. (2000). Media Composition and Anther Plating for Production of Androgenetic Green Plants from Cultivated Rye (Secale cereale L.). Journal of Plant Physiology, 156(2), 204-210. doi:10.1016/s0176-1617(00)80307-7Kiviharju, E., Puolimatka, M., Saastamoinen, M., & Pehu, E. (2000). Extension of anther culture to several genotypes of cultivated oats. Plant Cell Reports, 19(7), 674-679. doi:10.1007/s002999900165Liu, W., Zheng, M., & Konzak, C. (2002). Improving green plant production via isolated microspore culture in bread wheat (Triticum aestivum L.). Plant Cell Reports, 20(9), 821-824. doi:10.1007/s00299-001-0408-xCaredda, S., Devaux, P., Sangwan, R. S., Proult, I., & Clément, C. (2004). Plant Cell, Tissue and Organ Culture, 76(1), 35-43. doi:10.1023/a:1025812621775Kumari, M., Clarke, H. J., Small, I., & Siddique, K. H. M. (2009). Albinism in Plants: A Major Bottleneck in Wide Hybridization, Androgenesis and Doubled Haploid Culture. Critical Reviews in Plant Sciences, 28(6), 393-409. doi:10.1080/07352680903133252Höfer, M., Grafe, C., Boudichevskaja, A., Lopez, A., Bueno, M. A., & Roen, D. (2008). Characterization of plant material obtained by in vitro androgenesis and in situ parthenogenesis in apple. Scientia Horticulturae, 117(3), 203-211. doi:10.1016/j.scienta.2008.02.020Sharma, S., Chaudhary, H., & Sethi, G. (2010). In vitro and in vivo screening for drought tolerance in winter × spring wheat doubled haploids derived through chromosome elimination. Acta Agronomica Hungarica, 58(3), 301-312. doi:10.1556/aagr.58.2010.3.14Takahira, J., Cousin, A., Nelson, M. N., & Cowling, W. A. (2010). Improvement in efficiency of microspore culture to produce doubled haploid canola (Brassica napus L.) by flow cytometry. Plant Cell, Tissue and Organ Culture (PCTOC), 104(1), 51-59. doi:10.1007/s11240-010-9803-8Garcia-Arias, F., Sánchez-Betancourt, E., & Núñez, V. (2018). Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L.). Agronomía Colombiana, 36(3), 201-209. doi:10.15446/agron.colomb.v36n3.73108Sheng, X., Zhao, Z., Yu, H., Wang, J., Xiaohui, Z., & Gu, H. (2011). Protoplast isolation and plant regeneration of different doubled haploid lines of cauliflower (Brassica oleracea var. botrytis). Plant Cell, Tissue and Organ Culture (PCTOC), 107(3), 513-520. doi:10.1007/s11240-011-0002-zKeleş, D., Özcan, C., Pınar, H., Ata, A., Denli, N., Yücel, N. K., … Büyükalaca, S. (2016). First Report of Obtaining Haploid Plants Using Tissue Culture Techniques in Spinach. HortScience, 51(6), 742-749. doi:10.21273/hortsci.51.6.742Olszewska, D., Niklas-Nowak, A., & Nowaczyk, L. (2017). Estimation of genetic divergence within androgenic regenerants of Capsicum annuum L. ATZ1 × C. frutescens L. F 1 plants using random amplified polymorphic DNA markers. BioTechnologia, 98(3), 175-182. doi:10.5114/bta.2017.70795Budak, H., Shearman, R. C., Parmaksiz, I., & Dweikat, I. (2004). Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theoretical and Applied Genetics, 109(2), 280-288. doi:10.1007/s00122-004-1630-zSzarejko, I., & Forster, B. P. (2006). Doubled haploidy and induced mutation. Euphytica, 158(3), 359-370. doi:10.1007/s10681-006-9241-1Ferrie, A. M. R., Taylor, D. C., MacKenzie, S. L., Rakow, G., Raney, J. P., & Keller, W. A. (2008). Microspore mutagenesis ofBrassicaspecies for fatty acid modifications: a preliminary evaluation. Plant Breeding, 127(5), 501-506. doi:10.1111/j.1439-0523.2008.01502.xBirchler, J. A. (2015). Heterosis: The genetic basis of hybrid vigour. Nature Plants, 1(3). doi:10.1038/nplants.2015.2

    An Investigation of the Cellular Stress Response in Cells Infected With Herpes Simplex Virus

    Get PDF
    This study entailed an investigation of the cellular stress response in secondary chick embryo fibroblasts (CEF) during infection by HSV. It was established that infections at a+ NPT with temperature-sensitive mutants of HSV-1 which are defective in immediate-early viral polypeptide Vmw IE 175 (i.e. tsD, tsK and tsT) cause the stress response to be induced, as manifest by a marked stimulation of synthesis of stress proteins. Induction by tsK was shown to be dependent upon the synthesis of immediate-early viral polypeptides. Infections with other mutants of HSV-1 (tsl201, tsB, tsE, tsG and MDK/2) at a NPT and, to a lesser extent, the revertant of tSK, ts+K, or with wt HSV-1 or wt HSV-2, all of which are non-defective in Vmw IE 175 or the HSV-2 equivalent, Vmw IE 182, cause synthesis of stress proteins to be increased. To account for these observations a hypothesis was advanced, that cells are subjected to stress during infection with wt or mutant HSV, owing to the expresssion of viral functions, and that induction of the stress response is subsequently inhibited depending upon the characteristics of the infecting virus: inhibition is most effective in cells infected with wt viruses, and least effective in cells infected at a NPT with temperature-sensitive mutants of HSV-1 defective in Vmw IE 175

    5.Uluslararası Öğrenciler Fen Bilimleri Kongresi Tam Metin Kitabı

    Get PDF
    Çevrimiçi (IX, 431 Sayfa; 26 cm.)

    Microscopy Conference 2021 (MC 2021) - Proceedings

    Get PDF
    Das Dokument enthält die Kurzfassungen der Beiträge aller Teilnehmer an der Mikroskopiekonferenz "MC 2021"

    Biotechnology to Combat COVID-19

    Get PDF
    This book provides an inclusive and comprehensive discussion of the transmission, science, biology, genome sequencing, diagnostics, and therapeutics of COVID-19. It also discusses public and government health measures and the roles of media as well as the impact of society on the ongoing efforts to combat the global pandemic. It addresses almost every topic that has been studied so far in the research on SARS-CoV-2 to gain insights into the fundamentals of the disease and mitigation strategies. This volume is a useful resource for virologists, epidemiologists, biologists, medical professionals, public health and government professionals, and all global citizens who have endured and battled against the pandemic
    corecore