34,803 research outputs found

    Features-based moving objects tracking for smart video surveillances: A review

    Get PDF
    Video surveillance is one of the most active research topics in the computer vision due to the increasing need for security. Although surveillance systems are getting cheaper, the cost of having human operators to monitor the video feed can be very expensive and inefficient. To overcome this problem, the automated visual surveillance system can be used to detect any suspicious activities that require immediate action. The framework of a video surveillance system encompasses a large scope in machine vision, they are background modelling, object detection, moving objects classification, tracking, motion analysis, and require fusion of information from the camera networks. This paper reviews recent techniques used by researchers for detection of moving object detection and tracking in order to solve many surveillance problems. The features and algorithms used for modelling the object appearance and tracking multiple objects in outdoor and indoor environment are also reviewed in this paper. This paper summarizes the recent works done by previous researchers in moving objects tracking for single camera view and multiple cameras views. Nevertheless, despite of the recent progress in surveillance technologies, there still are challenges that need to be solved before the system can come out with a reliable automated video surveillance

    Modeling and tracking relative movement of object parts

    Get PDF
    Video surveillance systems play an important role in many civilian and military applications, for the purposes of security and surveillance. Object detection is an important component in a video surveillance system, used to identify possible objects of interest and to generate data for tracking and analysis purposes. Not much exploration has been done to track the moving parts of the object which is being tracked. Some of the promising techniques like Kalman Filter, Mean-shift algorithm, Matching Eigen Space, Discrete Wavelet Transform, Curvelet Transform, Distance Metric Learning have shown good performance for keeping track of moving object. Most of this work is focused on studying and analyzing various object tracking techniques which are available. Most of the techniques which are available for object tracking have heavy computation requirements. The intention of this research is to design a technique, which is not computationally intensive and to be able to track relative movements of object parts in real time. The research applies a technique called foreground detection (also known as background subtraction) for tracking the object as it is not computationally intensive. For tracking the relative movement of object parts, a skeletonization technique is used. During implementation, it is found that using skeletonization technique, it is harder to extract the objects parts

    Background Subtraction for Night Videos

    Get PDF
    Motion analysis is important in video surveillance systems and background subtraction is useful for moving object detection in such systems. However, most of the existing background subtraction methods do not work well for surveillance systems in the evening because objects are usually dark and reflected light is usually strong. To resolve these issues, we propose a framework that utilizes a Weber contrast descriptor, a texture feature extractor, and a light detection unit, to extract the features of foreground objects. We propose a local pattern enhancement method. For the light detection unit, our method utilizes the finding that lighted areas in the evening usually have a low saturation in hue-saturation-value and hue-saturation-lightness color spaces. Finally, we update the background model and the foreground objects in the framework. This approach is able to improve foreground object detection in night videos, which do not need a large data set for pre-training

    Tools for Advanced Video Metadata Modeling

    Get PDF
    In this Thesis, we focus on problems in surveillance video analysis and propose advanced metadata modeling techniques to address them. First, we explore the problem of constructing a snapshot summary of people in a video sequence. We propose an algorithm based on the eigen-analysis of faces and present an evaluation of the method. Second, we present an algorithm to learn occlusion points in a scene using long observations of moving objects, provide an implementation and evaluate its performance. Third, to address the problem of availability and storage of surveillance videos, we propose a novel methodology to simulate video metadata. The technique is completely automated and can generate metadata for any scenario with minimal user interaction. Finally, a threat detection model using activity analysis and trajectory data of moving objects is proposed and implemented. The collection of tools presented in this Thesis provides a basis for higher level video analysis algorithms

    Moving object detection, tracking and classification for smart video surveillance

    Get PDF
    Cataloged from PDF version of article.Video surveillance has long been in use to monitor security sensitive areas such as banks, department stores, highways, crowded public places and borders. The advance in computing power, availability of large-capacity storage devices and high speed network infrastructure paved the way for cheaper, multi sensor video surveillance systems. Traditionally, the video outputs are processed online by human operators and are usually saved to tapes for later use only after a forensic event. The increase in the number of cameras in ordinary surveillance systems overloaded both the human operators and the storage devices with high volumes of data and made it infeasible to ensure proper monitoring of sensitive areas for long times. In order to filter out redundant information generated by an array of cameras, and increase the response time to forensic events, assisting the human operators with identification of important events in video by the use of “smart” video surveillance systems has become a critical requirement. The making of video surveillance systems “smart” requires fast, reliable and robust algorithms for moving object detection, classification, tracking and activity analysis. In this thesis, a smart visual surveillance system with real-time moving object detection, classification and tracking capabilities is presented. The system operates on both color and gray scale video imagery from a stationary camera. It can handle object detection in indoor and outdoor environments and under changing illumination conditions. The classification algorithm makes use of the shape of the detected objects and temporal tracking results to successfully categorize objects into pre-defined classes like human, human group and vehicle. The system is also able to detect the natural phenomenon fire in various scenes reliably. The proposed tracking algorithm successfully tracks video objects even in full occlusion cases. In addition to these, some important needs of a robust smart video surveillance system such as removing shadows, detecting sudden illumination changes and distinguishing left/removed objects are met.Dedeoğlu, YiğithanM.S

    Security event recognition for visual surveillance

    Get PDF
    With rapidly increasing deployment of surveillance cameras, the reliable methods for automatically analyzing the surveillance video and recognizing special events are demanded by different practical applications. This paper proposes a novel effective framework for security event analysis in surveillance videos. First, convolutional neural network (CNN) framework is used to detect objects of interest in the given videos. Second, the owners of the objects are recognized and monitored in real-time as well. If anyone moves any object, this person will be verified whether he/she is its owner. If not, this event will be further analyzed and distinguished between two different scenes: moving the object away or stealing it. To validate the proposed approach, a new video dataset consisting of various scenarios is constructed for more complex tasks. For comparison purpose, the experiments are also carried out on the benchmark databases related to the task on abandoned luggage detection. The experimental results show that the proposed approach outperforms the state-of-the-art methods and effective in recognizing complex security events. © 2017 Copernicus GmbH. All rights reserved

    Artificial Neural Networks for Airport Runway Safety Systems

    Get PDF
    This paper presents the analysis of the existing approaches to ensuring the safety of aircraft`s takeoff and landing at airport runways using video surveillance systems. The subject area is formalized, and security threats and measures to prevent them are assessed. Optional architecture of the system designed for detection and classification of moving objects in the airport runway area is presented. The architecture is based on Neural Networks with AI elements. Also the original method of runway objects’ trajectory tracking is proposed. And finally, the research results of the applicability of the proposed architecture are presented.</p

    Detection and segmentation of moving objects in video using optical vector flow estimation

    Get PDF
    The objective of this thesis is to detect and identify moving objects in a video sequence. The currently available techniques for motion estimation can be broadly categorized into two main classes: block matching methods and optical flow methods.This thesis investigates the different motion estimation algorithms used for video processing applications. Among the available motion estimation methods, the Lucas Kanade Optical Flow Algorithm has been used in this thesis for detection of moving objects in a video sequence. Derivatives of image brightness with respect to x-direction, y-direction and time t are calculated to solve the Optical Flow Constraint Equation. The algorithm produces results in the form of horizontal and vertical components of optical flow velocity, u and v respectively. This optical flow velocity is measured in the form of vectors and has been used to segment the moving objects from the video sequence. The algorithm has been applied to different sets of synthetic and real video sequences.This method has been modified to include parameters such as neighborhood size and Gaussian pyramid filtering which improve the motion estimation process. The concept of Gaussian pyramids has been used to simplify the complex video sequences and the optical flow algorithm has been applied to different levels of pyramids. The estimated motion derived from the difference in the optical flow vectors for moving objects and stationary background has been used to segment the moving objects in the video sequences. A combination of erosion and dilation techniques is then used to improve the quality of already segmented content.The Lucas Kanade Optical Flow Algorithm along with other considered parameters produces encouraging motion estimation and segmentation results. The consistency of the algorithm has been tested by the usage of different types of motion and video sequences. Other contributions of this thesis also include a comparative analysis of the optical flow algorithm with other existing motion estimation and segmentation techniques. The comparison shows that there is need to achieve a balance between accuracy and computational speed for the implementation of any motion estimation algorithm in real time for video surveillance
    corecore