583 research outputs found

    The Use of a Convolutional Neural Network in Detecting Soldering Faults from a Printed Circuit Board Assembly

    Get PDF
    Automatic Optical Inspection (AOI) is any method of detecting defects during a Printed Circuit Board (PCB) manufacturing process. Early AOI methods were based on classic image processing algorithms using a reference PCB. The traditional methods require very complex and inflexible preprocessing stages. With recent advances in the field of deep learning, especially Convolutional Neural Networks (CNN), automating various computer vision tasks has been established. Limited research has been carried out in the past on using CNN for AOI. The present systems are inflexible and require a lot of preprocessing steps or a complex illumination system to improve the accuracy. This paper studies the effectiveness of using CNN to detect soldering bridge faults in a PCB assembly. The paper presents a method for designing an optimized CNN architecture to detect soldering faults in a PCBA. The proposed CNN architecture is compared with the state-of-the-art object detection architecture, namely YOLO, with respect to detection accuracy, processing time, and memory requirement. The results of our experiments show that the proposed CNN architecture has a 3.0% better average precision, has 50% less number of parameters and infers in half the time as YOLO. The experimental results prove the effectiveness of using CNN in AOI by using images of a PCB assembly without any reference image, any complex preprocessing stage, or a complex illumination system. Doi: 10.28991/HIJ-2022-03-01-01 Full Text: PD

    A Hierarchical, Fuzzy Inference Approach to Data Filtration and Feature Prioritization in the Connected Manufacturing Enterprise

    Get PDF
    The current big data landscape is one such that the technology and capability to capture and storage of data has preceded and outpaced the corresponding capability to analyze and interpret it. This has led naturally to the development of elegant and powerful algorithms for data mining, machine learning, and artificial intelligence to harness the potential of the big data environment. A competing reality, however, is that limitations exist in how and to what extent human beings can process complex information. The convergence of these realities is a tension between the technical sophistication or elegance of a solution and its transparency or interpretability by the human data scientist or decision maker. This dissertation, contextualized in the connected manufacturing enterprise, presents an original Fuzzy Approach to Feature Reduction and Prioritization (FAFRAP) approach that is designed to assist the data scientist in filtering and prioritizing data for inclusion in supervised machine learning models. A set of sequential filters reduces the initial set of independent variables, and a fuzzy inference system outputs a crisp numeric value associated with each feature to rank order and prioritize for inclusion in model training. Additionally, the fuzzy inference system outputs a descriptive label to assist in the interpretation of the feature’s usefulness with respect to the problem of interest. Model testing is performed using three publicly available datasets from an online machine learning data repository and later applied to a case study in electronic assembly manufacture. Consistency of model results is experimentally verified using Fisher’s Exact Test, and results of filtered models are compared to results obtained by the unfiltered sets of features using a proposed novel metric of performance-size ratio (PSR)

    Bosch's industry 4.0 advanced Data Analytics: historical and predictive data integration for decision support

    Get PDF
    Industry 4.0, characterized by the development of automation and data exchanging technologies, has contributed to an increase in the volume of data, generated from various data sources, with great speed and variety. Organizations need to collect, store, process, and analyse this data in order to extract meaningful insights from these vast amounts of data. By overcoming these challenges imposed by what is currently known as Big Data, organizations take a step towards optimizing business processes. This paper proposes a Big Data Analytics architecture as an artefact for the integration of historical data - from the organizational business processes - and predictive data - obtained by the use of Machine Learning models -, providing an advanced data analytics environment for decision support. To support data integration in a Big Data Warehouse, a data modelling method is also proposed. These proposals were implemented and validated with a demonstration case in a multinational organization, Bosch Car Multimedia in Braga. The obtained results highlight the ability to take advantage of large amounts of historical data enhanced with predictions that support complex decision support scenarios.This work has been supported by FCT -Fundacao para a Ciencia e Tecnologia within the Project Scope: UIDB/00319/2020, the Doctoral scholarships PD/BDE/135100/2017 and PD/BDE/135105/2017, and European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project n degrees 039479; Funding Reference: POCI-01-0247-FEDER039479]. The authors also wish to thank the automotive electronics company staff involved with this project for providing the data and valuable domain feedback. This paper uses icons made by Freepik, from www.flaticon.com
    • …
    corecore