1,574 research outputs found

    Improving the performance of QoS models in MANETs through interference monitoring and correction

    Get PDF
    Mobile Ad hoc Networks (MANETs) have been proposed for a wide variety of applications, some of which require the support of real time and multimedia services. To do so, the network should be able to offer quality of service (QoS) appropriate for the latency and throughput bounds to meet appropriate real time constraints imposed by multimedia data. Due to the limited resources such as bandwidth in a wireless medium, flows need to be prioritised in order to guarantee QoS to the flows that need it. In this research, we propose a scheme to provide QoS guarantee to high priority flows in the presence of other high as well as low priority flows so that both type of flows achieve best possible throughput and end-to-end delays. Nodes independently monitor the level of interference by checking the rates of the highest priority flows and signal corrective mechanisms when these rates fall outside of specified thresholds. This research investigates using simulations the effects of a number of important parameters in MANETs, including node speed, pause time, interference, and the dynamic monitoring and correction on system performance in static and mobile scenarios. In this report we show that the dynamic monitoring and correction provides improved QoS than fixed monitoring and correction to both high priority and low priority flows in MANETs

    Intrusion Detection in Mobile Ad Hoc Networks Using Classification Algorithms

    Full text link
    In this paper we present the design and evaluation of intrusion detection models for MANETs using supervised classification algorithms. Specifically, we evaluate the performance of the MultiLayer Perceptron (MLP), the Linear classifier, the Gaussian Mixture Model (GMM), the Naive Bayes classifier and the Support Vector Machine (SVM). The performance of the classification algorithms is evaluated under different traffic conditions and mobility patterns for the Black Hole, Forging, Packet Dropping, and Flooding attacks. The results indicate that Support Vector Machines exhibit high accuracy for almost all simulated attacks and that Packet Dropping is the hardest attack to detect.Comment: 12 pages, 7 figures, presented at MedHocNet 200

    A Lightweight and Attack Resistant Authenticated Routing Protocol for Mobile Adhoc Networks

    Full text link
    In mobile ad hoc networks, by attacking the corresponding routing protocol, an attacker can easily disturb the operations of the network. For ad hoc networks, till now many secured routing protocols have been proposed which contains some disadvantages. Therefore security in ad hoc networks is a controversial area till now. In this paper, we proposed a Lightweight and Attack Resistant Authenticated Routing Protocol (LARARP) for mobile ad hoc networks. For the route discovery attacks in MANET routing protocols, our protocol gives an effective security. It supports the node to drop the invalid packets earlier by detecting the malicious nodes quickly by verifying the digital signatures of all the intermediate nodes. It punishes the misbehaving nodes by decrementing a credit counter and rewards the well behaving nodes by incrementing the credit counter. Thus it prevents uncompromised nodes from attacking the routes with malicious or compromised nodes. It is also used to prevent the denial-of-service (DoS) attacks. The efficiency and effectiveness of LARARP are verified through the detailed simulation studies.Comment: 14 Pages, IJWM
    corecore