5,746 research outputs found

    Driving Rydberg-Rydberg transitions from a co-planar microwave waveguide

    Get PDF
    The coherent interaction between ensembles of helium Rydberg atoms and microwave fields in the vicinity of a solid-state co-planar waveguide is reported. Rydberg-Rydberg transitions, at frequencies between 25 GHz and 38 GHz, have been studied for states with principal quantum numbers in the range 30 - 35 by selective electric-field ionization. An experimental apparatus cooled to 100 K was used to reduce effects of blackbody radiation. Inhomogeneous, stray electric fields emanating from the surface of the waveguide have been characterized in frequency- and time-resolved measurements and coherence times of the Rydberg atoms on the order of 250 ns have been determined.Comment: 5 pages, 5 figure

    Computational Method for Phase Space Transport with Applications to Lobe Dynamics and Rate of Escape

    Full text link
    Lobe dynamics and escape from a potential well are general frameworks introduced to study phase space transport in chaotic dynamical systems. While the former approach studies how regions of phase space are transported by reducing the flow to a two-dimensional map, the latter approach studies the phase space structures that lead to critical events by crossing periodic orbit around saddles. Both of these frameworks require computation with curves represented by millions of points-computing intersection points between these curves and area bounded by the segments of these curves-for quantifying the transport and escape rate. We present a theory for computing these intersection points and the area bounded between the segments of these curves based on a classification of the intersection points using equivalence class. We also present an alternate theory for curves with nontransverse intersections and a method to increase the density of points on the curves for locating the intersection points accurately.The numerical implementation of the theory presented herein is available as an open source software called Lober. We used this package to demonstrate the application of the theory to lobe dynamics that arises in fluid mechanics, and rate of escape from a potential well that arises in ship dynamics.Comment: 33 pages, 17 figure

    Triaxial Galaxies with Cusps

    Full text link
    We have constructed fully self-consistent models of triaxial galaxies with central density cusps. The triaxial generalizations of Dehnen's spherical models are presented, which have densities that vary as 1/r^gamma near the center and 1/r^4 at large radii. We computed libraries of about 7000 orbits in each of two triaxial models with gamma=1 (weak cusp) and gamma=2 (strong cusp); these two models have density profiles similar to those of the core and power-law galaxies observed by HST. Both mass models have short-to-long axis ratios of 1:2 and are maximally triaxial. A large fraction of the orbits in both model potentials are stochastic, as evidenced by their non-zero Liapunov exponents. We show that most of the stochastic orbits in the strong- cusp potential diffuse relatively quickly through their allowed phase-space volumes, on time scales of 100 - 1000 dynamical times. Stochastic orbits in the weak-cusp potential diffuse more slowly, often retaining their box-like shapes for 1000 dynamical times or longer. Attempts to construct self- consistent solutions using just the regular orbits failed for both mass models. Quasi-equilibrium solutions that include the stochastic orbits exist for both models; however, real galaxies constructed in this way would evolve near the center due to the continued mixing of the stochastic orbits. We attempted to construct more nearly stationary models in which stochastic phase space was uniformly populated at low energies. These ``fully mixed'' solutions were found to exist only for the weak-cusp potential. No significant fraction of the mass could be placed on fully-mixed stochastic orbits in the strong-cusp model, demonstrating that strong triaxiality can be inconsistent with a high central density.Comment: 58 TEX pages, 14 PostScript figures, uses epsf.st

    Corner contributions to holographic entanglement entropy

    Full text link
    The entanglement entropy of three-dimensional conformal field theories contains a universal contribution coming from corners in the entangling surface. We study these contributions in a holographic framework and, in particular, we consider the effects of higher curvature interactions in the bulk gravity theory. We find that for all of our holographic models, the corner contribution is only modified by an overall factor but the functional dependence on the opening angle is not modified by the new gravitational interactions. We also compare the dependence of the corner term on the new gravitational couplings to that for a number of other physical quantities, and we show that the ratio of the corner contribution over the central charge appearing in the two-point function of the stress tensor is a universal function for all of the holographic theories studied here. Comparing this holographic result to the analogous functions for free CFT's, we find fairly good agreement across the full range of the opening angle. However, there is a precise match in the limit where the entangling surface becomes smooth, i.e., the angle approaches π\pi, and we conjecture the corresponding ratio is a universal constant for all three-dimensional conformal field theories. In this paper, we expand on the holographic calculations in our previous letter arXiv:1505.04804, where this conjecture was first introduced.Comment: 62 pages, 6 figures, 1 table; v2: minor modifications to match published version, typos fixe
    • …
    corecore