7,424 research outputs found

    Trends of the major porin gene (ompF) evolution

    Get PDF
    OmpF is one of the major general porins of Enterobacteriaceae that belongs to the first line of bacterial defense and interactions with the biotic as well as abiotic environments. Porins are surface exposed and their structures strongly reflect the history of multiple interactions with the environmental challenges. Unfortunately, little is known on diversity of porin genes of Enterobacteriaceae and the genus Yersinia especially. We analyzed the sequences of the ompF gene from 73 Yersinia strains covering 14 known species. The phylogenetic analysis placed most of the Yersinia strains in the same line assigned by 16S rDNA-gyrB tree. Very high congruence in the tree topologies was observed for Y. enterocolitica, Y. kristensenii, Y. ruckeri, indicating that intragenic recombination in these species had no effect on the ompF gene. A significant level of intra- and interspecies recombination was found for Y. aleksiciae, Y. intermedia and Y. mollaretii. Our analysis shows that the ompF gene of Yersinia has evolved with nonrandom mutational rate under purifying selection. However, several surface loops in the OmpF porin contain positively selected sites, which very likely reflect adaptive diversification Yersinia to their ecological niches. To our knowledge, this is a first investigation of diversity of the porin gene covering the whole genus of the family Enterobacteriaceae. This study demonstrates that recombination and positive selection both contribute to evolution of ompF, but the relative contribution of these evolutionary forces are different among Yersinia species

    After the SKA - Radio Astronomy in 2049

    Full text link
    The concept of a Square Kilometre Array was developed to ensure that progress in Radio Astronomy in the early 21st Century continued at the same impressive pace as was achieved during the first 50 years. The SKA telescope is designed to pave that road to greater and greater sensitivity. So what technical challenges does the project face and what key innovations will drive the success of the SKA? What will the next Radio Astronomy mega-science project look like? In this article the author discusses the likely avenues of progress in the coming decades and comments on the status of radio astronomy in 2049 - the author's 70th (and presumably her retirement) year.Comment: Conference Proceedings PoS(RTS2012), 8 pages, 1 figur

    Trends of the Major Porin Gene (ompF) Evolution: Insight from the Genus Yersinia

    Get PDF
    OmpF is one of the major general porins of Enterobacteriaceae that belongs to the first line of bacterial defense and interactions with the biotic as well as abiotic environments. Porins are surface exposed and their structures strongly reflect the history of multiple interactions with the environmental challenges. Unfortunately, little is known on diversity of porin genes of Enterobacteriaceae and the genus Yersinia especially. We analyzed the sequences of the ompF gene from 73 Yersinia strains covering 14 known species. The phylogenetic analysis placed most of the Yersinia strains in the same line assigned by 16S rDNA-gyrB tree. Very high congruence in the tree topologies was observed for Y. enterocolitica, Y. kristensenii, Y. ruckeri, indicating that intragenic recombination in these species had no effect on the ompF gene. A significant level of intra- and interspecies recombination was found for Y. aleksiciae, Y. intermedia and Y. mollaretii. Our analysis shows that the ompF gene of Yersinia has evolved with nonrandom mutational rate under purifying selection. However, several surface loops in the OmpF porin contain positively selected sites, which very likely reflect adaptive diversification Yersinia to their ecological niches. To our knowledge, this is a first investigation of diversity of the porin gene covering the whole genus of the family Enterobacteriaceae. This study demonstrates that recombination and positive selection both contribute to evolution of ompF, but the relative contribution of these evolutionary forces are different among Yersinia species

    Vulnerability Analysis of the MAVLink Protocol for Command and Control of Unmanned Aircraft

    Get PDF
    The MAVLink protocol is an open source, point-to-point networking protocol used to carry telemetry and to command and control many small unmanned aircraft. This research presents three exploits that compromise confidentiality, integrity, and availability vulnerabilities in the communication between an unmanned aerial vehicle and a ground control station using the MAVLink protocol. The attacks assume the configuration settings for the data-link hardware have been obtained. Field experiments using MAVProxy to compromise communication between an ArduPilot Mega 2.5 autopilot and the Mission Planner application demonstrate that all three exploits are successful when MAVLink messages are unprotected. A methodology is proposed to quantify the cost of securing the MAVLink protocol through the measurement of network latency, power consumption, and exploit success. Experimental measurements indicate that the ArduPilot Mega 2.5 autopilot running the ATmega2560 processor at 16 MHz with the standard, unsecured MAVLink protocol consumes on average 0.0105 additional watts of power per second and operates with an average additional latency of 0.11 seconds while under the most resource-intensive attack than when not under attack

    Examining recombination and intra-genomic conflict dynamics in the evolution of anti-microbial resistant bacteria

    Get PDF
    The spread of antimicrobial resistance (AMR) among pathogenic bacterial species threatens to undercut much of the progress made in treating infectious diseases. AMR genes can disseminate between and within populations via horizontal gene transfer (HGT). Selfish mobile genetic elements (MGEs) can encode resistance and spread between host cells. Homologous recombination can alter the core genes of pathogens with resistant donors via HGT too. MGEs may be cured from host genomes through transformation. Hence, MGEs may be able to avoid deletion by disrupting transformation. This work aims to understand how the dynamics of these processes affect the epidemiology of AMR pathogens. To understand these dynamics, I co-developed a new version of the popular recombination detection tool Gubbins. Through simulation studies, I find this new version to be both accurate in reconstructing the relationships between isolates, and efficient in terms of its use of computational resources. I then apply Gubbins to both AMR lineages and species-wide datasets of the pathogen Streptococcus pneumoniae. I find that recombination frequently occurs around core genes involved in both drug resistance and the host immune response. Additionally, an MGE was able to successfully spread within a population by disrupting the transformation machinery, preventing its loss from the host. Finally, I investigate two recent examples of MGEs disrupting transformation in the gram-negative species Acinetobacter baumannii and Legionella pneumophila. I find that while these insertions may decrease the efficiency of transformations within cells, the observed recombination rates largely reflect the selection pressures on isolates. With MGEs only partially able to inhibit these observable transformation events. These results show how selection pressures from clinical interventions shape pathogen genomes through diverse, often interspecies, recombination events. The spread of MGEs can also be favoured by both these selection pressures, and their ability to disrupt host cell machinery.Open Acces

    Measuring the legacies of sports mega events: a systematic review

    Get PDF
    Problem Statement: The legacies left by Sports Mega Events (SMEs) have been the object of research, studies, and analyses in different fields of science, generating conflicting views on whether they are beneficial or not for the host country or city. Considering this, science emphasizes its scope of research with the intention of understanding, investigating, analyzing, and/or developing proposals that can measure the legacies left behind by SMEs. Purpose: The purpose of this study was to conduct a systematic review with mixed literature of qualitative convergence regarding the measurement of legacies from SMEs. Approach: A mixed systematic review of qualitative convergence, which aims to transform results from qualitative and quantitative studies into qualitative findings, was conducted on three scientific databases in Portuguese, Spanish, and English languages, in accordance with the PRISMA protocol. Results: In total, 147 publications were found by the search. After applying the inclusion and exclusion criteria, 13 articles were included in the review. Content analysis using two analytical categories (theoretical implications and practical applications) was used to conduct the discussion. The theoretical implications category reveals articles that formulate concepts and express conceptual proposals for measuring legacies. The practical applications category contains articles with empirical studies that seek to somehow measure legacies. Conclusions: The data reveals that there are theoretical and practical studies about measuring the legacies of SMEs, especially in the fields of sports management and tourism. However, there is a lack of empirical studies that measure or demonstrate the positive and negative results stemming from SME legacies

    Molecular Evolution of the Primate Antiviral Restriction Factor Tetherin

    Get PDF
    Background: Tetherin is a recently identified antiviral restriction factor that restricts HIV-1 particle release in the absence of the HIV-1 viral protein U (Vpu). It is reminiscent of APOBEC3G and TRIM5a that also antagonize HIV. APOBEC3G and TRIM5a have been demonstrated to evolve under pervasive positive selection throughout primate evolution, supporting the redqueen hypothesis. Therefore, one naturally presumes that Tetherin also evolves under pervasive positive selection throughout primate evolution and supports the red-queen hypothesis. Here, we performed a detailed evolutionary analysis to address this presumption. Methodology/Principal Findings: Results of non-synonymous and synonymous substitution rates reveal that Tetherin as a whole experiences neutral evolution rather than pervasive positive selection throughout primate evolution, as well as in non-primate mammal evolution. Sliding-window analyses show that the regions of the primate Tetherin that interact with viral proteins are under positive selection or relaxed purifying selection. In particular, the sites identified under positive selection generally focus on these regions, indicating that the main selective pressure acting on the primate Tetherin comes from virus infection. The branch-site model detected positive selection acting on the ancestral branch of the New World Monkey lineage, suggesting an episodic adaptive evolution. The positive selection was also found in duplicated Tetherins in ruminants. Moreover, there is no bias in the alterations of amino acids in the evolution of the primate Tetherin, implyin

    Network Traffic Measurements, Applications to Internet Services and Security

    Get PDF
    The Internet has become along the years a pervasive network interconnecting billions of users and is now playing the role of collector for a multitude of tasks, ranging from professional activities to personal interactions. From a technical standpoint, novel architectures, e.g., cloud-based services and content delivery networks, innovative devices, e.g., smartphones and connected wearables, and security threats, e.g., DDoS attacks, are posing new challenges in understanding network dynamics. In such complex scenario, network measurements play a central role to guide traffic management, improve network design, and evaluate application requirements. In addition, increasing importance is devoted to the quality of experience provided to final users, which requires thorough investigations on both the transport network and the design of Internet services. In this thesis, we stress the importance of users’ centrality by focusing on the traffic they exchange with the network. To do so, we design methodologies complementing passive and active measurements, as well as post-processing techniques belonging to the machine learning and statistics domains. Traffic exchanged by Internet users can be classified in three macro-groups: (i) Outbound, produced by users’ devices and pushed to the network; (ii) unsolicited, part of malicious attacks threatening users’ security; and (iii) inbound, directed to users’ devices and retrieved from remote servers. For each of the above categories, we address specific research topics consisting in the benchmarking of personal cloud storage services, the automatic identification of Internet threats, and the assessment of quality of experience in the Web domain, respectively. Results comprise several contributions in the scope of each research topic. In short, they shed light on (i) the interplay among design choices of cloud storage services, which severely impact the performance provided to end users; (ii) the feasibility of designing a general purpose classifier to detect malicious attacks, without chasing threat specificities; and (iii) the relevance of appropriate means to evaluate the perceived quality of Web pages delivery, strengthening the need of users’ feedbacks for a factual assessment

    Characterization of the longitudinal HIV-1 quasispecies evolution in HIV-1 infected individuals co-infected with Mycobacterium tuberculosis

    Get PDF
    One of the earliest and most striking observations made about HIV is the extensive genetic variation that the virus has within individual hosts, particularly in the hypervariable regions of the env gene which is divided into 5 variable regions (V1-V5) and 5 more constant (C1-C5) regions. HIV evolves at any time over the course of an individual’s infection and infected individuals harbours a population of genetically related but non-identical viruses that are under constant change and ready to adapt to changes in their environment. These genetically heterogeneous populations of closely related genomes are called quasispecies [65]. Tuberculosis or tubercle forming disease is an acute and/or chronic bacterial infection that primarily attacks the lungs, but which may also affect the kidneys, bones, lymph nodes, and brain. The disease is caused by Mycobacterium tuberculosis (MTB), a slow growing rod-shaped, acid fast bacterium. It is transmitted from person to person through inhalation of bacteria-carrying air droplets. Worldwide, one person out of three is infected with Mycobacterium tuberculosis – two billion people in total. TB currently holds the seventh place in the global ranking of causes of death [73]. In 2008, there were an estimated 9.4 (range, 8.9–9.9 million) million incident cases (equivalent to 139 cases per 100 000 population) of TB globally [75]. A complex biological interplay occurs between M. tuberculosis and HIV in coinfected host that results in the worsening of both pathologies. HIV promotes progression of M. tuberculosis either by endogenous reactivation or exogenous reinfection [77, 78] and, the course of HIV-1 infection is accelerated subsequent to the development of TB [80]. Active TB is associated with an increase in intra-patient HIV-1 diversity both systemically and at the infected lung sites [64,122]. The sustainability or reversal of the HIV-1 quasispecies heterogeneity after TB treatment is not known. Tetanus toxoid vaccinated HIV-1 infected patients developed a transient increase in HIV-1 heterogeneity which was reversed after few weeks [121]. Emergence of a heterogeneous HIV-1 population within a patient may be one of the mechanisms to escape strong immune or drug pressure [65,128]. The existence of better fitting and/or immune escape HIV-variants can lead to an increase in HIV-1 replication [129,130]. It might be that TB favourably selected HIV-1 variants which are sources for consistent HIV-1 replication. Understanding the mechanisms underlying the impacts of TB on HIV-1 is essential for the development of effective measures to reduce TB related morbidity and mortality in HIV-1 infected individuals. In the present study we studied whether the increase in HIV-1 quasispecies diversity during active TB is reversed or preserved throughout the course of antituberculous chemotherapy. For this purpose Two time point HIV-1 quasispecies were evaluated by comparing HIV-1 infected patients with active tuberculosis (HIV-1/TB) and HIV-1 infected patients without tuberculosis (HIV-1/non TB). Plasma samples were obtained from the Frankfurt HIV cohort and HIV-1 RNA was isolated. C2V5 env was amplified by PCR and molecular cloning was performed. Eight to twenty five clones were sequenced from each patient. Various phylogenetic analyses were performed including tree inferences, intra-patient viral diversity and divergence, selective pressure, co-receptor usage prediction and two time point identity of quasispecies comparison using Mantel’s test. We found out from this study that: 1) Active TB sustains HIV-1 quasispecies diversity for longer period 2. Active TB increases the rate of HIV-1 divergence 3) TB might slow down evolution of X4 variants And we concluded that active TB has an impact on HIV-1 viral diversity and divergence over time. The influence of active TB on longitudinal evolution of HIV- 1 may be predominant for R5 viruses. The use of CCR5-coreceptor inhibitors for HIV-1/TB patients as therapeutic approach needs further investigation.Eine der ersten und überraschenden Beobachtungen, welche bei der Analyse des HI-Virus gemacht wurden ist seine ausgeprägte Genetische Variabilität besonders die hypervariable Region des env Genes betreffen. Dieses wird in 5 variable Regionen (V1-V5) sowie 5 stärker konservierte Regionen (C1-C5) unterteilt. HIV wandelt sich zu jedem Zeitpunkt im Verlauf der Infektion und jedes infizierte Individuum ist Träger einer Population von genetisch verwandten jedoch nicht identischen Viren, welche sich kontinuierlich verändern und an die Erfordernisse innerhalb der Umgebung anpassen. Diese genetisch heterogenen, jedoch eng verwandten Populationen werden Quasispecies genannt. Tuberkulose ist eine mykobakterielle Infektion, welche sowohl akute als auch chronische Verläufe zeigt. Neben den Lungen als primärem Manifestationsort können auch die Nieren, Knochen und andere Organe befallen sein. Eine von drei Personen weltweit ist mit Mycobacterium tuberculosis infiziert, insgesamt 2 Milliarden Menschen. In HIV/TB Co-Inifzierten Menschen entsteht ein komplexes Zusammenspiel zwischen HIV und M. tuberculosis, welches zu einer Verschlechterung beider Krankheitsbilder führt. HIV führt durch endogene Rekativierung oder exogene Re-Infektion zu einer Progression der Tuberkulose, welche im weiteren Verlauf die Krankheitsprogression von HIV beschleunigt. Sowohl Morbidität als auch Mortalität sind in HIV-1/TB Co-Infizierten Menschen erhöht. Aktive Lungentuberkulose und Miliartuberkulose gehen mit dem Anstieg der Diversifität der HIV Viren innerhalb eines Wirtes einher. Wie lange diese erhöhte Heterogenität der HIV Quasispecies nach der erfolgreichen Behandlung einer Tuberkulose bestehen bleibt ist bisher noch unklar. Das Verständnis des dem Zusammenspiel von HIV und TB zugrundeliegenden Mechanismus ist essentiell für die Entwicklung von effektiven Massnahmen zur Senkung der Morbidität und Mortalität in HIV/TB Co-infizierten Menschen. Die gegenwärtige Forschungsarbeit folgte daher der Frage, ob wärend einer aktiven TB Infektion eine Zunahme der Diversität der HIV-1 Quasispecies zu beobachten ist und ob diese Diversität während einer TB Therapie erhalten bleibt oder sich zurück bildet. Hierfür wurden die HIV-1 Quasispecies zu zwei Zeitpunkten untersucht, wobei Proben von HIV-1 infizierten Patienten mit aktiver Tuberkulose (HIV-1/TB) und HIV infizierte Patienten ohne Tuberkulose (HIV-1/non TB) verglichen wurden. Aus Plasmaproben der Frankfurter HIV Cohorte wurde HIV-1 RNA isoliert. C2V5 env wurde durch PCR amplifiziert und molekular cloniert. Acht bis fünfundzwanzig Clone wurden für jeden Patienten sequenziert. Mehrere phylogenetische Analysen wurden durchgeführt, welche tree inferences, Intra-Patienten- und virale Diversität und Divergenz, Selektionsdruckanalysen, Vorhersage der Co-Rezeptornutzung sowie Zweipunktanalysen der Identität von Quasispecies mit Hilfe des Mantel’s Test miteinschlossen. Die Analysen ergaben die folgenden Ergebnisse: 1) Eine aktive TB erhält die Diversität von HIV-1 Quasispecies über einen längeren Zeitraum. 2. Eine aktive TB verstärkt die HIV -1 Divergenz 3) TB könnte zu einer langsameren Evolution von X4 Varianten führen. Schlussfolgerung: eine aktive TB beeinflusst die Entwicklung der viralen Diversität und Divergenz von HIV-1 im Verlauf der Krankheit. Der Einfluss der aktiven TB auf die longitudinale Evolution von HIV-1 könnte insbesondere R5 Viren betreffen. Der Einsatz von CCR5-Corezeptor Inhibitoren in HIV-1/TB coinifizerten Patienten sollte daher in Langzeitstudien untersucht werden
    • …
    corecore