6,100 research outputs found

    Detecting the adherence of driving rules in an energy-efficient, safe and adaptive driving system

    Get PDF
    An adaptive and rule-based driving system is being developed that tries to improve the driving behavior in terms of the energy-efficiency and safety by giving recommendations. Therefore, the driving system has to monitor the adherence of driving rules by matching the rules to the driving behavior. However, existing rule matching algorithms are not sufficient, as the data within a driving system is changing frequently. In this paper a rule matching algorithm is introduced that is able to handle frequently changing data within the context of the driving system. 15 journeys were used to evaluate the performance of the rule matching algorithms. The results showed that the introduced algorithm outperforms existing algorithms in the context of the driving system. Thus, the introduced algorithm is suited for matching frequently changing data against rules with a higher performance, why it will be used in the driving system for the detection of broken energy-efficiency or safety-relevant driving rules

    Using an improved rule match algorithm in an expert system to detect broken driving rules for an energy-efficiency and safety relevant driving system

    Get PDF
    Vehicles have been so far improved in terms of energy-efficiency and safety mainly by optimising the engine and the power train. However, there are opportunities to increase energy-efficiency and safety by adapting the individual driving behaviour in the given driving situation. In this paper, an improved rule match algorithm is introduced, which is used in the expert system of a human-centred driving system. The goal of the driving system is to optimise the driving behaviour in terms of energy-efficiency and safety by giving recommendations to the driver. The improved rule match algorithm checks the incoming information against the driving rules to recognise any breakings of a driving rule. The needed information is obtained by monitoring the driver, the current driving situation as well as the car, using in-vehicle sensors and serial-bus systems. On the basis of the detected broken driving rules, the expert system will create individual recommendations in terms of energy-efficiency and safety, which will allow eliminating bad driving habits, while considering the driver needs

    An adaptive and rule based driving system for energy-e cient and safe driving behaviour

    Get PDF
    Falta palabras claveSaving energy and protecting the environment became fundamental for society and politics, why several laws were enacted to increase the energye ciency. Furthermore, the growing number of vehicles and drivers leaded to more accidents and fatalities on the roads, why road safety became an important factor as well. Due to the increasing importance of energye ciency and safety, car manufacturers started to optimise the vehicle in terms of energy-e ciency and safety. However, energy-e ciency and road safety can be also increased by adapting the driving behaviour to the given driving situation. This thesis presents a concept of an adaptive and rule based driving system that tries to educate the driver in energy-e cient and safe driving by showing recommendations on time. Unlike existing driving systems, the presented driving system considers energy-e ciency and safety relevant driving rules, the individual driving behaviour and the driver condition. This allows to avoid the distraction of the driver and to increase the acceptance of the driving system, while improving the driving behaviour in terms of energy-e ciency and safety. A prototype of the driving system was developed and evaluated. The evaluation was done on a driving simulator using 42 test drivers, who tested the e_ect of the driving system on the driving behaviour and the e_ect of the adaptiveness of the driving system on the user acceptance. It has been proven during the evaluation that the energy-e ciency and safety can be increased, when the driving system was used. Furthermore, it has been proven that the user acceptance of the driving system increases when the adaptive feature was turned on. A high user acceptance of the driving system allows a steady usage of the driving system and, thus, a steady improvement of the driving behaviour in terms of energy-e ciency and safety

    Machine learning and blockchain technologies for cybersecurity in connected vehicles

    Get PDF
    Future connected and autonomous vehicles (CAVs) must be secured againstcyberattacks for their everyday functions on the road so that safety of passengersand vehicles can be ensured. This article presents a holistic review of cybersecurityattacks on sensors and threats regardingmulti-modal sensor fusion. A compre-hensive review of cyberattacks on intra-vehicle and inter-vehicle communicationsis presented afterward. Besides the analysis of conventional cybersecurity threatsand countermeasures for CAV systems,a detailed review of modern machinelearning, federated learning, and blockchain approach is also conducted to safe-guard CAVs. Machine learning and data mining-aided intrusion detection systemsand other countermeasures dealing with these challenges are elaborated at theend of the related section. In the last section, research challenges and future direc-tions are identified

    Implicit personalization in driving assistance: State-of-the-art and open issues

    Get PDF
    In recent decades, driving assistance systems have been evolving towards personalization for adapting to different drivers. With the consideration of driving preferences and driver characteristics, these systems become more acceptable and trustworthy. This article presents a survey on recent advances in implicit personalized driving assistance. We classify the collection of work into three main categories: 1) personalized Safe Driving Systems (SDS), 2) personalized Driver Monitoring Systems (DMS), and 3) personalized In-vehicle Information Systems (IVIS). For each category, we provide a comprehensive review of current applications and related techniques along with the discussion of industry status, benefits of personalization, application prospects, and future focal points. Both relevant driving datasets and open issues about personalized driving assistance are discussed to facilitate future research. By creating an organized categorization of the field, we hope that this survey could not only support future research and the development of new technologies for personalized driving assistance but also facilitate the application of these techniques within the driving automation community</h2

    Design and validation of decision and control systems in automated driving

    Get PDF
    xxvi, 148 p.En la última década ha surgido una tendencia creciente hacia la automatización de los vehículos, generando un cambio significativo en la movilidad, que afectará profundamente el modo de vida de las personas, la logística de mercancías y otros sectores dependientes del transporte. En el desarrollo de la conducción automatizada en entornos estructurados, la seguridad y el confort, como parte de las nuevas funcionalidades de la conducción, aún no se describen de forma estandarizada. Dado que los métodos de prueba utilizan cada vez más las técnicas de simulación, los desarrollos existentes deben adaptarse a este proceso. Por ejemplo, dado que las tecnologías de seguimiento de trayectorias son habilitadores esenciales, se deben aplicar verificaciones exhaustivas en aplicaciones relacionadas como el control de movimiento del vehículo y la estimación de parámetros. Además, las tecnologías en el vehículo deben ser lo suficientemente robustas para cumplir con los requisitos de seguridad, mejorando la redundancia y respaldar una operación a prueba de fallos. Considerando las premisas mencionadas, esta Tesis Doctoral tiene como objetivo el diseño y la implementación de un marco para lograr Sistemas de Conducción Automatizados (ADS) considerando aspectos cruciales, como la ejecución en tiempo real, la robustez, el rango operativo y el ajuste sencillo de parámetros. Para desarrollar las aportaciones relacionadas con este trabajo, se lleva a cabo un estudio del estado del arte actual en tecnologías de alta automatización de conducción. Luego, se propone un método de dos pasos que aborda la validación de ambos modelos de vehículos de simulación y ADS. Se introducen nuevas formulaciones predictivas basadas en modelos para mejorar la seguridad y el confort en el proceso de seguimiento de trayectorias. Por último, se evalúan escenarios de mal funcionamiento para mejorar la seguridad en entornos urbanos, proponiendo una estrategia alternativa de estimación de posicionamiento para minimizar las condiciones de riesgo

    Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia

    Get PDF
    Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials

    2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018

    Get PDF
    The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies. As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency. In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community. In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor
    corecore