3,002 research outputs found

    Development of a convolutional neural network joint detector for non-orthogonal multiple access uplink receivers

    Get PDF
    We present a novel approach to signal detection for Non-Orthogonal Multiple Access (NOMA) uplink receivers using Convolutional Neural Networks (CNNs) in a single-shot fashion. The defacto NOMA detection method is the so-called Successive Interference Cancellation which requires precise channel estimation and accurate successive detection of the user equipment with the higher powers. It is proposed converting incoming packets into 2D image-like streams. These images are fed to a CNN-based deep learning network commonly used in the image processing literature for image classification. The classification label for each packet converted to an image is the transmitted symbols by all user equipment joined together. CNN network is trained using uniformly distributed samples of incoming packets at different signals to noise ratios. Furthermore, let’s performed hyperparameter optimization using the exhaustive search method. Our approach is tested using a modeled system of two user equipment systems in a 64-subcarrier Orthogonal Frequency Division Multiplexing (OFDM) and Rayleigh channel. It is found that a three-layer CNN with 32 filters of size 7×7 has registered the highest training and testing accuracy of about 81. In addition, our result showed significant improvement in Symbol Error Rate (SER) vs. Signal to Noise Ratio (SNR) compared to other state-of-the-art approaches such as least square, minimum mean square error, and maximum likelihood under various channel conditions. When the channel length is fixed at 20, our approach is at least one significant Figure better than the maximum likelihood method at (SNR) of 2 dB. Finally, the channel length to 12 is varied and it is registered about the same performance. Hence, our approach is more robust to joint detection in NOMA receivers, particularly in low signal-to-noise environment

    Low-molecular components of colostrum as a regulator of the organism redox-system and biological antidote

    Get PDF
    The protein composition in the diapason of molecular masses from 4800 to 9500 Dа has been studied in colostrum, taken from different cows, and manifested the expressed biological activity. For this aim, an influence of low-molecular components of colostrum on some physiological parameters (change of body mass and temperature) at intoxication of animals (Wistar rats) by blue stone has been studied. An influence of colostrum low-molecular components on parameters of the organism redox-system (content of hyperperoxides of lipids and activity of glutathione peroxidase) in the blood serum of animals has been studied. For determining integral characteristics of colostrum components, electric conductivity of skim colostrum and one of colostrum with low-molecular proteins (less than 10 000 Dа), taken from different cows, were used. The aim of this work is to study interconnections of an influence of colostrum low-molecular proteins on models of organism intoxication by cooper ions. It is demonstrated, that the colostrum composition includes 25–35 different proteins with a molecular mass from 4800 to 9500 Dа. The number and ratio between protein fractions depend on individual physiological-biochemical characteristics of producers. It has been revealed, that there is no direct dependence between the protein content in a measuring cell (2 mg/ml, 4 mg/ml and 10 mg/ml) with skim colostrum and electric conductivity change, and this dependence is different for skim colostrum, taken from different cows. Individual differences are manifested both at electric conductivity change and by the content of colostrum low-molecular proteins in a measuring cell. It is demonstrated, that colostrum low-molecular components can eliminate the toxic effect of blue stone on the organism, which mechanisms are connected with a balance shift in the system “prooxidants↔antioxidants” towards antioxidants. The electric conductivity of colostrum components may be used as an express-method for evaluating biologically active substances of colostru

    The phenomenology of truth: the psychological functions of the insight experience

    Get PDF

    MATHEMATICAL MODEL OF THE SYSTEM OF ACTIVE PROTECTION AGAINST EAVESDROPPING OF SPEECH INFORMATION ON THE SCRAMBLER GENERATOR

    Get PDF
    The development of reliable systems for protecting speech information that can protect it from being intercepted by cybercriminals is a fundamental task of the security service of organizations and firms. For these purposes, active jamming systems are used at the border of the controlled area. The main element of such systems is noise generators. However, in many cases, “white” noise and its clones are used as interference, which makes it possible for an attacker to gain unauthorized access. The structure and mathematical model of a speech information protection system based on a scrambler-type noise generator is proposed. The transition in such systems of protection of speech information to this structure allows to abandon the outdated, ineffective in modern conditions, energy noise of speech information and move on to a more productive method – information (linguistic) masking. An analysis of the destructive effect of this type of interference shows its high resistance to modern methods of mathematical processing of digital phonograms (wavelet transform, correlation-spectral analysis, etc.), filtering interference, and dividing the voices of speakers. Studies of the mathematical model in the environment of Matlab 15 R2015a/Simulink show the high efficiency of such a protection system and a decrease in the signal-to-noise ratio with a residual speech intelligibility of 0.1 by 6...9 dBA. This leads to a decrease in noise in the room and beyond, which positively affects the bioacoustic characteristics of the premises, improves working conditions and staff productivity, and also reduces the unmasking performance of the objec

    OPTIMIZATION OF PRODUCTION PROCESS OF PEELED GRAINS OF WHEAT OF DIFFERENT SOLIDITY

    Get PDF
    Wheat is a leading agricultural plant with one of most gross grain harvest in the world. It is a valuable raw material for producing the wide assortment of food products. That is why little studied peculiarities of it need specification, and processing technologies – improvement. The aim of the conducted studies was in specifying of processing regimes of solid and soft wheat grains into peeled ones that allowed to choose rational regimes of water-thermal processing for attaining their maximal output, boiling coefficient and decrease of a preparation duration. It was proved, that the effect of heat and moisture mostly influences the output of grains and duration of their boiling, despite the solidity. The boiling coefficient depends on the solidity type more. The optimal mode as to thermal processing at production of peeled grains of soft wheat is is steaming during 10 min with hydration during 10–12 min. It is rational to steam solid wheat during 10 min with further hydration during 12–13 min at processing

    Discovery and Follow-up of Rotating Radio Transients with the Green Bank and LOFAR Telescopes

    Get PDF
    We have discovered 21 Rotating Radio Transients (RRATs) in data from the Green Bank Telescope (GBT) 350-MHz Drift-scan and the Green Bank North Celestial Cap pulsar surveys using a new candidate sifting algorithm. RRATs are pulsars with sporadic emission that are detected through their bright single pulses rather than Fourier domain searches. We have developed {\tt RRATtrap}, a single-pulse sifting algorithm that can be integrated into pulsar survey data analysis pipelines in order to find RRATs and Fast Radio Bursts. We have conducted follow-up observations of our newly discovered sources at several radio frequencies using the GBT and Low Frequency Array (LOFAR), yielding improved positions and measurements of their periods, dispersion measures, and burst rates, as well as phase-coherent timing solutions for four of them. The new RRATs have dispersion measures (DMs) ranging from 15 to 97 pc cm3^{-3}, periods of 240 ms to 3.4 s, and estimated burst rates of 20 to 400 pulses hr1^{-1} at 350 MHz. We use this new sample of RRATs to perform statistical comparisons between RRATs and canonical pulsars in order to shed light on the relationship between the two populations. We find that the DM and spatial distributions of the RRATs agree with those of the pulsars found in the same survey. We find evidence that slower pulsars (i.e. P>200P>200 ms) are preferentially more likely to emit bright single pulses than are faster pulsars (P<200P<200 ms), although this conclusion is tentative. Our results are consistent with the proposed link between RRATs, transient pulsars, and canonical pulsars as sources in various parts of the pulse activity spectrum.Comment: 18 pages, 13 figures, 5 tables, published in Ap

    Comparative assessment of spray nozzles efficacy in the control of fusarium head blight in the barley crops using developed quantitative PCR assay

    Get PDF
    Fusarium species infect cereal spikes during anthesis and cause Fusarium head blight (FHB), a destructive disease of cereal crops with worldwide economic relevance. The necessity for these phytopathogenic fungi effective control becomes increasingly important for the production of both cultivated plants and those plants seeds. Fungicide application is a key methodology for controlling the disease development and mycotoxin contamination in cereals. Polymerase chain reaction (PCR) is currently the most commonly admitted DNA-based technology for specific, rapid and precise Fusarium detection. We have developed and patented the method for detection and quantitative determination of phytopathogenic fungi F.&nbsp;avenaceum and F.&nbsp;graminearum in plant seeds using Real-Time PCR with a pair of primers, designed to amplify sequences of the internal transcribed spacer at the ribosomal RNA gene cluster of those phytopathogenic fungi. This study was aimed to perform a comparative assessment of the efficacy of different spray nozzles for antifungal treatment to control F.&nbsp;avenaceum and F.&nbsp;graminearum infection of barley grains using a developed qPCR diagnostic system. A single application of a fungicide (active ingredient's content: 250 g/l propiconazole, 80 g/l cyproconazole) at BBCH 65 (middle of flowering) was carried out. For this purpose, four spray nozzles with different technical characteristics were used: Flat Fan 030, Amistar 030, Defy 3D 030 and Vegetable 060 (Pentair, USA). DNA-based fungi detection and identification was performed using conventional PCR and developed qPCR. The level of mycotoxins in barley grain was determined using enzyme-linked immunosorbent assay (ELISA). Grain count in the ear of barley and thousand seed weight (TSW) were also examined. A single application of the fungicide inhibited the development of FHB and is accompanied by the slight increase of TSW values in treated plants. It was found, that the most effective fungicide was against F.&nbsp;avenaceum and F.&nbsp;graminearum. The inhibitory effect depended on sprayer type. According to qPCR results, the best performance was achieved when using Amistar 030 and Flat Fan (FF) 030 sprayers. The average concentration of deoxynivalenol (DON) content in all barley grain samples were up to 4 times higher than the permissible level. Overall, because of the high contamination levels, found in tested samples, it is possible to state that a single application of the fungicide at the flowering phase was not able to effectively reduce DON contamination in barley samples. The developed test-system for qPCR provides new important information in the study of the effectiveness of fungicides and development of strategies to control FHB in cereals, not achievable with conventional PCR

    OPTIMIZATION OF PRODUCTION PROCESS OF PEELED GRAINS OF WHEAT OF DIFFERENT SOLIDITY

    Get PDF
    Wheat is a leading agricultural plant with one of most gross grain harvest in the world. It is a valuable raw material for producing the wide assortment of food products. That is why little studied peculiarities of it need specification, and processing technologies – improvement. The aim of the conducted studies was in specifying of processing regimes of solid and soft wheat grains into peeled ones that allowed to choose rational regimes of water-thermal processing for attaining their maximal output, boiling coefficient and decrease of a preparation duration. It was proved, that the effect of heat and moisture mostly influences the output of grains and duration of their boiling, despite the solidity. The boiling coefficient depends on the solidity type more. The optimal mode as to thermal processing at production of peeled grains of soft wheat is is steaming during 10 min with hydration during 10–12 min. It is rational to steam solid wheat during 10 min with further hydration during 12–13 min at processing

    Photoelasticity revived for Tactile Sensing

    Get PDF
    corecore