106 research outputs found

    Yield-Aware Leakage Power Reduction of On-Chip SRAMs

    Get PDF
    Leakage power dissipation of on-chip static random access memories (SRAMs) constitutes a significant fraction of the total chip power consumption in state-of-the-art microprocessors and system-on-chips (SoCs). Scaling the supply voltage of SRAMs during idle periods is a simple yet effective technique to reduce their leakage power consumption. However, supply voltage scaling also results in the degradation of the cells’ robustness, and thus reduces their capability to retain data reliably. This is particularly resulting in the failure of an increasing number of cells that are already weakened by excessive process parameters variations and/or manufacturing imperfections in nano-meter technologies. Thus, with technology scaling, it is becoming increasingly challenging to maintain the yield while attempting to reduce the leakage power of SRAMs. This research focuses on characterizing the yield-leakage tradeoffs and developing novel techniques for a yield-aware leakage power reduction of SRAMs. We first demonstrate that new fault behaviors emerge with the introduction of a low-leakage standby mode to SRAMs. In particular, it is shown that there are some types of defects in SRAM cells that start to cause failures only when the drowsy mode is activated. These defects are not sensitized in the active operating mode, and thus escape the traditional March tests. Fault models for these newly observed fault behaviors are developed and described in this thesis. Then, a new low-complexity test algorithm, called March RAD, is proposed that is capable of detecting all the drowsy faults as well as the simple traditional faults. Extreme process parameters variations can also result in SRAM cells with very weak data-retention capability. The probability of such cells may be very rare in small memory arrays, however, in large arrays, their probability is magnified by the huge number of bit-cells integrated on a single chip. Hence, it is critical also to account for such extremal events while attempting to scale the supply voltage of SRAMs. To estimate the statistics of such rare events within a reasonable computational time, we have employed concepts from extreme value theory (EVT). This has enabled us to accurately model the tail of the cell failure probability distribution versus the supply voltage. Analytical models are then developed to characterize the yield-leakage tradeoffs in large modern SRAMs. It is shown that even a moderate scaling of the supply voltage of large SRAMs can potentially result in significant yield losses, especially in processes with highly fluctuating parameters. Thus, we have investigated the application of fault-tolerance techniques for a more efficient leakage reduction of SRAMs. These techniques allow for a more aggressive voltage scaling by providing tolerance to the failures that might occur during the sleep mode. The results show that in a 45-nm technology, assuming 10% variation in transistors threshold voltage, repairing a 64KB memory using only 8 redundant rows or incorporating single error correcting codes (ECCs) allows for ~90% leakage reduction while incurring only ~1% yield loss. The combination of redundancy and ECC, however, allows to reach the practical limits of leakage reduction in the analyzed benchmark, i.e., ~95%. Applying an identical standby voltage to all dies, regardless of their specific process parameters variations, can result in too many cell failures in some dies with heavily skewed process parameters, so that they may no longer be salvageable by the employed fault-tolerance techniques. To compensate for the inter-die variations, we have proposed to tune the standby voltage of each individual die to its corresponding minimum level, after manufacturing. A test algorithm is presented that can be used to identify the minimum applicable standby voltage to each individual memory die. A possible implementation of the proposed tuning technique is also demonstrated. Simulation results in a 45-nm predictive technology show that tuning standby voltage of SRAMs can enhance data-retention yield by an additional 10%−50%, depending on the severity of the variations

    Comparing the impact of power supply voltage on CMOS-and FinFET-based SRAMs in the presence of resistive defects

    Get PDF
    CMOS technology scaling has reached its limit at the 22 nm technology node due to several factors including Process Variations (PV), increased leakage current, Random Dopant Fluctuation (RDF), and mainly the Short-Channel Effect (SCE). In order to continue the miniaturization process via technology down-scaling while preserving system reliability and performance, Fin Field-Effect Transistors (FinFETs) arise as an alternative to CMOS transistors. In parallel, Static Random-Access Memories (SRAMs) increasingly occupy great part of Systems-on-Chips’ (SoCs) silicon area, making their reliability an important issue. SRAMs are designed to reach densities at the limit of the manufacturing process, making this component susceptible to manufacturing defects, including the resistive ones. Such defects may cause dynamic faults during the circuits’ lifetime, an important cause of test escape. Thus, the identification of the proper faulty behavior taking different operating conditions into account is considered crucial to guarantee the development of more suitable test methodologies. In this context, a comparison between the behavior of a 22 nm CMOS-based and a 20 nm FinFET-based SRAM in the presence of resistive defects is carried out considering different power supply voltages. In more detail, the behavior of defective cells operating under different power supply voltages has been investigated performing SPICE simulations. Results show that the power supply voltage plays an important role in the faulty behavior of both CMOS- and FinFET-based SRAM cells in the presence of resistive defects but demonstrate to be more expressive when considering the FinFET-based memories. Studying different operating temperatures, the results show an expressively higher occurrence of dynamic faults in FinFET-based SRAMs when compared to CMOS technology

    An Experimental Evaluation of Resistive Defects and Different Testing Solutions in Low-Power Back-Biased SRAM Cells

    Get PDF
    This paper compares different types of resistive defects that may occur inside low-power SRAM cells, focusing on their impact on device operation. Notwithstanding the continuous evolution of SRAM device integration, manufacturing processes continue to be very sensitive to production faults, giving rise to defects that can be modeled as resistances, especially for devices designed to work in low-power modes. This work analyzes this type of resistive defect that may impair the device functionalities in subtle ways, depending on the defect characteristics and values that may not be directly or easily detectable by traditional test methods. We analyze each defect in terms of the possible effects inside the SRAM cell, its impact on power consumption, and provide guidelines for selecting the best test methods

    Weak Cell Detection in Deep-Submicron SRAMs: A Programmable Detection Technique

    Full text link

    PPM Reduction on Embedded Memories in System on Chip

    Full text link
    This paper summarizes advanced test patterns designed to target dynamic and time-related faults caused by new defect mechanisms in deep-submicron memory technologies. Such tests are industrially evaluated together with the traditional tests at "Design of Systems on Silicon (DS2)" in Spain in order to (a) validate the used fault models and (b) investigate the added value of the new tests and their impact on the PPM level. The preliminary silicon results are presented and analyzed. They validate some of the new dynamic fault models and show the importance of considering dynamic faults for high outgoing product quality.Electrical Engineering, Mathematics and Computer Scienc

    Sensor de envelhecimento para células de memória CMOS

    Get PDF
    Dissertação de Mestrado, Engenharia e Tecnologia, Instituto Superior de Engenharia, Universidade do Algarve, 2016As memórias Complementary Metal Oxide Semiconductor (CMOS) ocupam uma percentagem de área significativa nos circuitos integrados e, com o desenvolvimento de tecnologias de fabrico a uma escala cada vez mais reduzida, surgem problemas de performance e de fiabilidade. Efeitos como o BTI (Bias Thermal Instability), TDDB (Time Dependent Dielectric Breakdown), HCI (Hot Carrier Injection), EM (Electromigration), degradam os parâmetros físicos dos transístores de efeito de campo (MOSFET), alterando as suas propriedades elétricas ao longo do tempo. O efeito BTI pode ser subdividido em NBTI (Negative BTI) e PBTI (Positive BTI). O efeito NBTI é dominante no processo de degradação e envelhecimento dos transístores CMOS, afetando os transístores PMOS, enquanto o efeito PBTI assume especial relevância na degradação dos transístores NMOS. A degradação provocada por estes efeitos, manifesta-se nos transístores através do incremento do módulo da tensão de limiar de condução |ℎ| ao longo do tempo. A degradação dos transístores é designada por envelhecimento, sendo estes efeitos cumulativos e possuindo um grande impacto na performance do circuito, em particular se ocorrerem outras variações paramétricas. Outras variações paramétricas adicionais que podem ocorrer são as variações de processo (P), tensão (V) e temperatura (T), ou considerando todas estas variações, e de uma forma genérica, PVTA (Process, Voltage, Temperature and Aging). As células de memória de acesso aleatório (RAM, Random Access Memory), em particular as memórias estáticas (SRAM, Static Random Access Memory) e dinâmicas (DRAM, Dynamic Random Access Memory), possuem tempos de leitura e escrita precisos. Quando ao longo do tempo ocorre o envelhecimento das células de memória, devido à degradação das propriedades dos transístores MOSFET, ocorre também uma degradação da performance das células de memória. A degradação de performance é, portanto, resultado das transições lentas que ocorrem, devido ao envelhecimento dos transístores MOSFET que comutam mais tarde, comparativamente a transístores novos. A degradação de performance nas memórias devido às transições lentas pode traduzir-se em leituras e escritas mais lentas, bem como em alterações na capacidade de armazenamento da memória. Esta propriedade pode ser expressa através da margem de sinal ruído (SNM). O SNM é reduzido com o envelhecimento dos transístores MOSFET e, quando o valor do SNM é baixo, a célula perde a sua capacidade de armazenamento, tornando-se mais vulnerável a fontes de ruído. O SNM é, portanto, um valor que permite efetuar a aferição (benchmarking) e comparar as características da memória perante o envelhecimento ou outras variações paramétricas que possam ocorrer. O envelhecimento das memórias CMOS traduz-se portanto na ocorrência de erros nas memórias ao longo do tempo, o que é indesejável especialmente em sistemas críticos. O trabalho apresentado nesta dissertação tem como objetivo o desenvolvimento de um sensor de envelhecimento e performance para memórias CMOS, detetando e sinalizando para o exterior o envelhecimento em células de memória SRAM devido à constante monitorização da sua performance. O sensor de envelhecimento e performance é ligado na bit line da célula de memória e monitoriza ativamente as operações de leitura e escrita decorrentes da operação da memória. O sensor de envelhecimento é composto por dois blocos: um detetor de transições e um detetor de pulsos. O detetor de transições é constituído por oito inversores e uma porta lógica XOR realizada com portas de passagem. Os inversores possuem diferentes relações nos tamanhos dos transístores P/N, permitindo tempos de comutação em diferentes valores de tensão. Assim, quando os inversores com tensões de comutações diferentes são estimulados pelo mesmo sinal de entrada e são ligados a uma porta XOR, permitem gerar na saída um impulso sempre que existe uma comutação na bit line. O impulso terá, portanto, uma duração proporcional ao tempo de comutação do sinal de entrada, que neste caso particular são as operações de leitura e escrita da memória. Quando o envelhecimento ocorre e as transições se tornam mais lentas, os pulsos possuem uma duração superior face aos pulsos gerados numa SRAM nova. Os pulsos gerados seguem para um elemento de atraso (delay element) que provoca um atraso aos pulsos, invertendo-os de seguida, e garantindo que a duração dos pulsos é suficiente para que exista uma deteção. O impulso gerado é ligado ao bloco seguinte que compõe o sensor de envelhecimento e performance, sendo um circuito detetor de pulso. O detetor de pulso implementa um NOR CMOS, controlado por um sinal de relógio (clock) e pelos pulsos invertidos. Quando os dois sinais de input do NOR são ‘0’ o output resultante será ‘1’, criando desta forma uma janela de deteção. O sensor de envelhecimento será ajustado em cada implementação, de forma a que numa célula de memória nova os pulsos invertidos se encontrem alinhados temporalmente com os pulsos de relógio. Este ajuste é feito durante a fase de projeto, em função da frequência de operação requerida para a célula, quer pelo dimensionamento do delay element (ajustando o seu atraso), quer pela definição do período do sinal de relógio. À medida que o envelhecimento dos circuitos ocorre e as comutações nos transístores se tornam mais lentas, a duração dos pulsos aumenta e consequentemente entram na janela de deteção, originando uma sinalização na saída do sensor. Assim, caso ocorram operações de leitura e escrita instáveis, ou seja, que apresentem tempos de execução acima do expectável ou que os seus níveis lógicos estejam degradados, o sensor de envelhecimento e performance devolve para o exterior ‘1’, sinalizando um desempenho crítico para a operação realizada, caso contrário a saída será ‘0’, indicando que não é verificado nenhum erro no desempenho das operações de escrita e leitura. Os transístores do sensor de envelhecimento e performance são dimensionados de acordo com a implementação; por exemplo, os modelos dos transístores selecionados, tensões de alimentação, ou número de células de memória conectadas na bit line, influenciam o dimensionamento prévio do sensor, já que tanto a performance da memória como o desempenho do sensor dependem das condições de operação. Outras soluções previamente propostas e disponíveis na literatura, nomeadamente o sensor de envelhecimento embebido no circuito OCAS (On-Chip Aging Sensor), permitem detetar envelhecimento numa SRAM devido ao envelhecimento por NBTI. Porém esta solução OCAS apenas se aplica a um conjunto de células SRAM conectadas a uma bit line, não sendo aplicado individualmente a outras células de memória como uma DRAM e não contemplando o efeito PBTI. Uma outra solução já existente, o sensor Scout flip-flop utilizado para aplicações ASIC (Application Specific Integrated Circuit) em circuitos digitais síncronos, atua também como um sensor de performance local e responde de forma preditiva na monitorização de faltas por atraso, utilizando por base janelas de deteção. Esta solução não foi projetada para a monitorização de operações de leitura e escrita em memórias SRAM e DRAM. No entanto, pela sua forma de atuar, esta solução aproxima-se mais da solução proposta neste trabalho, uma vez que o seu funcionamento se baseia em sinalização de sinais atrasados. Nesta dissertação, o recurso a simulações SPICE (Simulation Program with Integrated Circuit Emphasis) permite validar e testar o sensor de envelhecimento e performance. O caso de estudo utilizado para aplicar o sensor é uma memória CMOS, SRAM, composta por 6 transístores, juntamente com os seus circuitos periféricos, nomeadamente o amplificador sensor e o circuito de pré-carga e equalização, desenvolvidos em tecnologia CMOS de 65nm e 22nm, com recurso aos modelos de MOSFET ”Berkeley Predictive Technology Models (PTM)”. O sensor é devolvido e testado em 65nm e em 22nm com os modelos PTM, permitindo caracterizar o sensor de envelhecimento e performance desenvolvido, avaliando também de que forma o envelhecimento degrada as operações de leitura e escrita da SRAM, bem como a sua capacidade de armazenamento e robustez face ao ruído. Por fim, as simulações apresentadas provam que o sensor de envelhecimento e performance desenvolvido nesta tese de mestrado permite monitorizar com sucesso a performance e o envelhecimento de circuitos de memória SRAM, ultrapassando os desafios existentes nas anteriores soluções disponíveis para envelhecimento de memórias. Verificou-se que na presença de um envelhecimento que provoque uma degradação igual ou superior a 10%, o sensor de envelhecimento e performance deteta eficazmente a degradação na performance, sinalizando os erros. A sua utilização em memórias DRAM, embora possível, não foi testada nesta dissertação, ficando reservada para trabalho futuro

    Design and Analysis of Low-power SRAMs

    Get PDF
    The explosive growth of battery operated devices has made low-power design a priority in recent years. Moreover, embedded SRAM units have become an important block in modern SoCs. The increasing number of transistor count in the SRAM units and the surging leakage current of the MOS transistors in the scaled technologies have made the SRAM unit a power hungry block from both dynamic and static perspectives. Owing to high bitline voltage swing during write operation, the write power consumption is dominated the dynamic power consumption. The static power consumption is mainly due to the leakage current associated with the SRAM cells distributed in the array. Moreover, as supply voltage decreases to tackle the power consumption, the data stability of the SRAM cells have become a major concern in recent years. To reduce the write power consumption, several schemes such as row based sense amplifying cell (SAC) and hierarchical bitline sense amplification (HBLSA) have been proposed. However, these schemes impose architectural limitations on the design in terms of the number of words on a row. Beside, the effectiveness of these methods is limited to the dynamic power consumption. Conventionally, reduction of the cell supply voltage and exploiting the body effect has been suggested to reduce the cell leakage current. However, variation of the supply voltage of the cell associates with a higher dynamic power consumption and reduced cell data stability. Conventionally qualified by Static Noise Margin (SNM), the ability of the cell to retain the data is reduced under a lower supply voltage conditions. In this thesis, we revisit the concept of data stability from the dynamic perspective. A new criteria for the data stability of the SRAM cell is defined. The new criteria suggests that the access time and non-access time (recovery time) of the cell can influence the data stability in a SRAM cell. The speed vs. stability trade-off opens new opportunities for aggressive power reduction for low-power applications. Experimental results of a test chip implemented in a 130 nm CMOS technology confirmed the concept and opened a ground for introduction of a new operational mode for the SRAM cells. We introduced a new architecture; Segmented Virtual Grounding (SVGND) to reduce the dynamic and static power reduction in SRAM units at the same time. Thanks to the new concept for the data stability in SRAM cells, we introduced the new operational mode of Accessed Retention Mode (AR-Mode) to the SRAM cell. In this mode, the accessed SRAM cell can retain the data, however, it does not discharge the bitline. The new architecture outperforms the recently reported low-power schemes in terms of dynamic power consumption, thanks to the exclusive discharge of the bitline and the cell virtual ground. In addition, the architecture reduces the leakage current significantly since it uses the back body biasing in both load and drive transistors. A 40Kb SRAM unit based on SVGND architecture is implemented in a 130 nm CMOS technology. Experimental results exhibit a remarkable static and dynamic power reduction compared to the conventional and previously reported low-power schemes as expect from the simulation results

    Sensor de performance para células de memória CMOS

    Get PDF
    Vivemos hoje em dia tempos em que quase tudo tem um pequeno componente eletrónico e por sua vez esse componente precisa de uma memória para guardar as suas instruções. Dentro dos vários tipos de memórias, as Complementary Metal Oxide Semiconductor (CMOS) são as que mais utilização têm nos circuitos integrados e, com o avançar da tecnologia a ficar cada vez com uma escala mais reduzida, faz com que os problemas de performance e fiabilidade sejam uma constante. Efeitos como o BTI (Bias Thermal Instability), TDDB (Time Dependent Dielectric Breakdown), HCI (Hot Carrier Injection), EM (Electromigration), ao longo do tempo vão deteriorando os parâmetros físicos dos transístores de efeito de campo (MOSFET), mudando as suas propriedades elétricas. Associado ao efeito de BTI podemos ter o efeito PBTI (Positive BTI), que afeta mais os transístores NMOS, e o efeito NBTI (Negative BTI), que afeta mais os transístores PMOS. Se para nanotecnologias até 32 nanómetros o efeito NBTI é dominante, para tecnologias mais baixas os 2 efeitos são igualmente importantes. Porém, existem ainda outras variações no desempenho que podem colocar em causa o bom funcionamento dos circuitos, como as variações de processo (P), tensão (V) e temperatura (T), ou considerando todas estas variações, e de uma forma genérica, PVTA (Process, Voltage, Temperature and Aging). Tendo como base as células de memória de acesso aleatório (RAM, Random Access Memory), em particular as memórias estáticas (SRAM, Static Random Access Memory) e dinâmicas (DRAM, Dynamic Random Access Memory) que possuem tempos de leitura e escrita precisos, estas ficam bastante expostas ao envelhecimento dos seus componentes e, consecutivamente, acontece um decréscimo na sua performance, resultando em transições mais lentas, que por sua vez fará com que existam leituras e escritas mais lentas e poderão ocorrer erros nessas leituras e escritas . Para além destes fenómenos, temos também o facto de a margem de sinal ruido (SNM - Static Noise Margin) diminuir, fazendo com que a fiabilidade da memória seja colocada em causa. O envelhecimento das memórias CMOS traduz-se, portanto, na ocorrência de erros nas memórias ao longo do tempo, o que é indesejável, especialmente em sistemas críticos onde a ocorrência de um erro ou uma falha na memória pode significar por em risco sistemas de elevada importância e fundamentais (por exemplo, em sistemas de segurança, um erro pode desencadear um conjunto de ações não desejadas). Anteriormente já foram apresentadas algumas soluções para esta monitorização dos erros de uma memória, disponíveis na literatura, como é o caso do sensor de envelhecimento embebido no circuito OCAS (On-Chip Aging Sensor), que permite detetar envelhecimento numa SRAM provocado pelo envelhecimento por NBTI. Contudo este sensor demonstra algumas limitações, pois apenas se aplica a um conjunto de células SRAM conectadas a uma bit line, não sendo aplicado individualmente a outras células de memória como uma DRAM e não contemplando o efeito PBTI. Outra solução apresentada anteriormente é o Sensor de Envelhecimento para Células de Memória CMOS que demonstra alguma evolução em relação ao sensor OCAS. Contudo, ainda tem limitações, como é o caso de estar bastante dependente do sincronismo com a memória e não permitir qualquer tipo de calibração do sistema ao longo do seu funcionamento. O trabalho apresentado nesta dissertação resolve muitos dos problemas existentes nos trabalhos anteriores. Isto é, apresenta-se um sensor de performance para memórias capaz de reconhecer quando é que a memória pode estar na eminência de falhar, devido a fatores que afetam o desempenho da memória nas operações de escrita e leitura. Ou seja, sinaliza de forma preditiva as falhas. Este sensor está dividido em três grandes partes, como a seguir se descreve. O Transistion Detector é uma delas, que funciona como um “conversor” das transições na bit line da memória para o sensor, criando pulsos de duração proporcional à duração da transição na bit line, sendo que uma transição rápida resulta em pulsos curtos e uma transição lenta resulta em pulsos longos. Esta parte do circuito apresenta 2 tipos de configurações para o caso de ser aplicado numa SRAM, sendo que uma das configurações é para as memórias SRAM inicializadas a VDD, e a segunda configuração para memórias SRAM inicializadas a VDD/2. É também apresentada uma terceira configuração para o caso de o detetor ser aplicado numa DRAM. O funcionamento do detetor de transições está baseado num conjunto de inversores desequilibrados (ou seja, com capacidades de condução diferentes entre o transístor N e P no inversor), criando assim inversores do tipo N (com o transístor N mais condutivo que o P) e inversores do tipo P (com o transístor P mais condutivo que o N) que respondem de forma diferente às transições de 1 para 0 e vice-versa. Estas diferenças serão cruciais para a criação do pulso final que entrará no Pulse Detetor. Este segundo bloco do sensor é responsável por carregar um condensador com uma tensão proporcional ao tempo que a bit line levou a transitar. É nesta parte que se apresenta uma caraterística nova e importante, quando comparado com as soluções já existentes, que é a capacidade do sensor poder ser calibrado. Para isso, é utilizado um conjunto de transístores para carregar o condensador durante o impulso gerado no detetor de transições, que permitem aumentar ou diminuir a resistência de carga do condensador, ficando este com mais ou menos tensão (a tensão proporcional ao tempo da transição da bit line) a ser usada na Comparação seguinte. O terceiro grande bloco deste sensor é resumidamente um bloco comparador, que compara a tensão guardada no condensador com uma tensão de referência disponível no sensor e definida durante o projeto. Este comparador tem a função de identificar qual destas 2 tensões é a mais alta (a do condensador, que é proporcional ao tempo de transição da bit line, ou a tensão de referência) e fazer com a mesma seja “disparada” para VDD, sendo que a tensão mais baixa será colocada a VSS. Desta forma é sinalizado se a transição que está a ser avaliada deve ser considerada um erro ou não. Para controlar todo o processo, o sensor tem na sua base de funcionamento um controlador (uma máquina de estados finita composta por 3 estados). O primeiro estado do controlador é o estado de Reset, que faz com que todos os pontos do circuito estejam com as tenções necessárias ao início de funcionamento do mesmo. O segundo estado é o Sample, que fica a aguardar uma transição na bit line para ser validada pelo sensor e fazer com que o mesmo avance para o terceiro estado, que é o de Compare, onde ativa o comparador do sensor e coloca no exterior o resultado dessa comparação. Assim, se for detetado uma transição demasiado lenta na bit line, que é um sinal de erro, o mesmo será sinalizado para o exterior activando o sinal de saída. Caso o sensor não detete nenhum erro nas transições, o sinal de saída não é activado. O sensor tem a capacidade de funcionar em modo on-line, ou seja, não é preciso desligar o circuito de memória do seu funcionamento normal para poder ser testado. Para além disso, pode ainda ser utilizado internamente na memória, como sensor local (monitorizando as células reais de memória), ou externamente, como sensor global, caso seja colocado a monitorizar uma célula de memória fictícia.Within the several types of memories, the Complementary Metal Oxide Semiconductor (CMOS) are the most used in the integrated circuits and, as technology advances and becomes increasingly smaller in scale, it makes performance and reliability a constant problem. Effects such as BTI (Bias Thermal Instability), the positive (PBTI - Positive BTI) and the negative (NBTI - Negative BTI), TDDB (Time Dependent Dielectric Breakdown), HCI (Hot Carrier Injection), EM (Electromigration), etc., are aging effects that contribute to a cumulatively degradation of the transistors. Moreover, other parametric variations may also jeopardize the proper functioning of circuits and contribute to reduce circuits’ performance, such as process variations (P), power-supply voltage variations (V) and temperature variations (T), or considering all these variations, and in a generic way, PVTA (Process, Voltage, Temperature and Aging). The Sensor proposed in this paper aims to signalize these problems so that the user knows when the memory operation may be compromised. The sensor is made up of three important parts, the Transition Detector, the Pulse Detector and the Comparator, creating a sensor that converts bit line transition created in a memory operation (read or write) into a pulse and a voltage, that can be compared with a reference voltage available in the sensor. If the reference voltage is higher than the voltage proportional to the bit line transition time, the sensor output is not activated; but if the bit line transition time is high enough to generate a voltage higher than the reference voltage in the sensor, the sensor output signalizes a predictive error, denoting that the memory performance is in a critical state that may lead to an error if corrective measures are not taken. One important feature in this sensor topology is that it can be calibrated during operation, by controlling sensor’s sensibility to the bit line transition. Another important feature is that it can be applied locally, to monitor the online operation of the memory, or globally, by monitoring a dummy memory in pre-defined conditions. Moreover, it can be applied to SRAM or DRAM, being the first online sensor available for DRAM memories

    Design, implementation and testing of SRAM based neutron detectors

    Get PDF
    Neutrons of thermal and high energies can change the value of a bit stored in a Static Random Access Memory (SRAM) memory chip. The effect is non destructive and linearly dependent on the amount of incoming particles, which makes it exploitable for use as a neutron detector. Detection is done by writing a known pattern to the memory and continuously reading it back checking for wrong values. As the SRAM memory is immune to gamma radiation it is ideal for use in for instance medical linear accelerators for detection of neutron dose to a patient. The intention of this work has been twofold: (1) Testing of different SRAM devices of different bit-sizes, manufacturers, feature sizes and voltages for their sensitivity to neutrons of different energies from thermal to high energies. (2) Design and implement detector hardware, firmware and its accompanying readout system for successful use in irradiation testing. The work has been done in close collaboration with Eivind Larsen, whose main contributions has been related to the nuclear physics aspect of the work in addition to arrangements in regard to beam setup and experimentation. Testing have been done at the Physikalisch-Technische Bundesanstalt (PTB) facility in Braunschweig Germany in a quasi-monochromatic neutron beam of 5:8MeV, 8:5MeV and 14:8MeV, finding a dependence of the sensitivity on the energy. In addition there have been testing conducted in the high energy hadron field at CERF at CERN, finding that by using the results from the other experiments an estimated range of the saturation cross section could be determined. Testing was also conducted at two occasions in the 29MeV proton beam at Oslo Cyclotron Laboratory (OCL) in Oslo Norway, where it was found that the detector could be used as a reference detector for beam monitoring and for beam profile characterization. The cross sections of the detectors were found to be comparable to the 14:8MeV cross section found at PTB. Thermal neutron testing of the devices was done in the thermal neutron field of the nuclear reactor at Institute for Energy Technology (IFE) at Kjeller Norway. All the devices were found to be sensitive to the field. Detector electronics, adapted to the different devices, has been built which can withstand the same radiation as the memory device without malfunctioning. There has been a focus on using Commercial Off The Shelf (COTS) components for reducing the total cost of the detector to about 100-200$US. The use of COTS SRAM memory devices also simplifies the reproducibility and availability of spares. The detector currently uses a two way communication between the detector and iv Abstract the readout computer over two pair of cables reducing the amount of cabling needed for experiments. The detectors can be connected to the communication link in a bus fashion, currently enabling a total of 14 detectors to be tested simultaneously from 100m away, over the same cable. Single Event Latch-up (SEL) and problems with irregular count rate of SRAMs created in the 90nm fabrication node has created problems during testing. Some solutions and techniques to mitigate these in hardware and firmware are presented in this work.Master i FysikkMAMN-PHYSPHYS39

    NS-SRAM: Neighborhood Solidarity SRAM for Reliability Enhancement of SRAM Memories

    Get PDF
    Technology shift and voltage scaling increased the susceptibility of Static Random Access Memories (SRAMs) to errors dramatically. In this paper, we present NS-SRAM, for Neighborhood Solidarity SRAM, a new technique to enhance error resilience of SRAMs by exploiting the adjacent memory bit data. Bit cells of a memory line are paired together in circuit level to mutually increase the static noise margin and critical charge of a cell. Unlike existing techniques, NS-SRAM aims to enhance both Bit Error Rate (BER) and Soft Error rate (SER) at the same time. Due to auto-adaptive joiners, each of the adjacent cells' nodes is connected to its counterpart in the neighbor bit. NS-SRAM enhances read-stability by increasing critical Read Static Noise Margin (RSNM), thereby decreasing faults when circuit operates under voltage scaling. It also increases hold-stability and critical charge to mitigate soft-errors. By the proposed technique, reliability of SRAM based structures such as cache memories and register files can drastically be improved with comparable area overhead to existing hardening techniques. Moreover it does not require any extra-memory, does not impact the memory effective size, and has no negative impact on performance. © 2016 IEEE
    corecore