210 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    A New Italian Cultural Heritage Data Set: Detecting Fake Reviews With BERT and ELECTRA Leveraging the Sentiment

    Get PDF
    Consiglio Nazionale delle Ricerche-CARI-CARE-ITALY’ within the CRUI CARE Agreemen

    Knowledge Modelling and Learning through Cognitive Networks

    Get PDF
    One of the most promising developments in modelling knowledge is cognitive network science, which aims to investigate cognitive phenomena driven by the networked, associative organization of knowledge. For example, investigating the structure of semantic memory via semantic networks has illuminated how memory recall patterns influence phenomena such as creativity, memory search, learning, and more generally, knowledge acquisition, exploration, and exploitation. In parallel, neural network models for artificial intelligence (AI) are also becoming more widespread as inferential models for understanding which features drive language-related phenomena such as meaning reconstruction, stance detection, and emotional profiling. Whereas cognitive networks map explicitly which entities engage in associative relationships, neural networks perform an implicit mapping of correlations in cognitive data as weights, obtained after training over labelled data and whose interpretation is not immediately evident to the experimenter. This book aims to bring together quantitative, innovative research that focuses on modelling knowledge through cognitive and neural networks to gain insight into mechanisms driving cognitive processes related to knowledge structuring, exploration, and learning. The book comprises a variety of publication types, including reviews and theoretical papers, empirical research, computational modelling, and big data analysis. All papers here share a commonality: they demonstrate how the application of network science and AI can extend and broaden cognitive science in ways that traditional approaches cannot

    Network Intrusion Detection System using Deep Learning Technique

    Get PDF
    The rise in the usage of the internet in this recent time had led to tremendous development in computer networks with large volumes of information transported daily. This development has generated lots of security threats and privacy concerns on networks and data. To tackle these issues, several protective measures have been developed including the Intrusion Detection Systems (IDSs). IDS plays a major backbone in network security and provides an extra layer of security to other security defence mechanisms in a network. However, existing IDS built on a signature base such as snort and the likes are unable to detect unknown and novel threats. Anomaly detection-based IDSs that use Machine Learning (ML) approaches are not scalable when enormous data are presented, and during modelling, the runtime increases as the dataset size increases which needs high computational resources to fulfil the runtime requirements. This thesis proposes a Feedforward Deep Neural Network (FFDNN) for an intrusion detection system that performs a binary classification on the popular NSL-Knowledge discovery and data mining (NSL-KDD) dataset. The model was developed from Keras API integrated into TensorFlow in Google's colaboratory software environment. Three variants of FFDNNs were trained using the NSL-KDD dataset and the network architecture consisted of two hidden layers with 64 and 32; 32 and 16; 512 and 256 neurons respectively, and each with the ReLu activation function. The sigmoid activation function for binary classification was used in the output layer and the prediction loss function used was the binary cross-entropy. Regularization was set to a dropout rate of 0.2 and the Adam optimizer was used. The deep neural networks were trained for 16, 20, 20 epochs respectively for batch sizes of 256, 64, and 128. After evaluating the performances of the FFDNNs on the training data, the prediction was made on test data, and accuracies of 89%, 84%, and 87% were achieved. The experiment was also conducted on the same training dataset (NSL-KDD) using the conventional machine learning algorithms (Random Forest; K-nearest neighbor; Logistic regression; Decision tree; and Naïve Bayes) and predictions of each algorithm on the test data gave different performance accuracies of 81%, 76%, 77%, 77%, 77%, respectively. The performance results of the FFDNNs were calculated based on some important metrics (FPR, FAR, F1 Measure, Precision), and these were compared to the conventional ML algorithms and the outcome shows that the deep neural networks performed best due to their dense architecture that made it scalable with the large size of the dataset and also offered a faster run time during training in contrast to the slow run time of the Conventional ML. This implies that when the dataset is large and a faster computation is required, then FFDNN is a better choice for best performance accuracy

    Umělá inteligence v kybernetické bezpečnosti

    Get PDF
    Artifcial intelligence (AI) and machine learning (ML) have grown rapidly in recent years, and their applications in practice can be seen in many felds, ranging from facial recognition to image analysis. Recent developments in Artificial intelligence have a vast transformative potential for both cybersecurity defenders and cybercriminals. Anti-malware solutions adopt intelligent techniques to detect and prevent threats to the digital space. In contrast, cybercriminals are aware of the new prospects too and likely to adapt AI techniques to their operations. This thesis presents advances made so far in the field of applying AI techniques in cybersecurity for combating against cyber threats, to demonstrate how this promising technology can be a useful tool for detection and prevention of cyberattacks. Furthermore, the research examines how transnational criminal organizations and cybercriminals may leverage developing AI technology to conduct more sophisticated criminal activities. Next, the research outlines the possible dynamic new kind of malware, called X-Ware and X-sWarm, which simulates the swarm system behaviour and integrates the neural network to operate more efficiently as a background for the forthcoming anti-malware solution. This research proposes how to record and visualize the behaviour of these type of malware when it propagates through the file system, computer network (virus process is known) or by observed data analysis (virus process is not known and we observe only the data from the system). Finally, a paradigm of an anti-malware solution, named Multi agent antivirus system has been proposed in the thesis that gives the insight to develop a more robust, adaptive and flexible defence system.Význam umělé inteligence (AI) a strojového učení (ML) v posledních letech rychle rostl a na jejich aplikacích lze vidět, že v mnoha oblastech, od rozpoznávání obličeje až po analýzu obrazu, byl učiněn velký pokrok. Poslední vývoj v oblasti umělé inteligence má obrovský potenciál jak pro obránce v oblasti kybernetické bezpečnosti, tak pro ůtočníky. AI se stává řešením v otázce obrany proti modernímu malware a hraje tak důležitou roli v detekci a prevenci hrozeb v digitálním prostoru. Naproti tomu kyberzločinci jsou si vědomi nových vyhlídek ve spojení s AI a pravděpodobně přizpůsobí tyto techniky novým generacím malware, vektorům útoku a celkově jejich operacím. Tato práce představuje dosavadní pokroky aplikace technik AI v oblasti kybernetické bezpečnosti. V této oblasti tzn. v boji proti kybernetickým hrozbám se ukázuje jako slibná technologie a užitečný nástroj pro detekci a prevenci kybernetických útoků. V práci si rovněž pokládme otázku, jak mohou nadnárodní zločinecké organizace a počítačoví zločinci využít vyvíjející se technologii umělé inteligence k provádění sofistikovanějších trestných činností. Konečně, výzkum nastíní možný nový druh malware, nazvaný X-Ware, který simuluje chování hejnového systému a integruje neuronovou síť tak, aby fungovala efektivněji a tak se celý X-Ware a X-sWarm dal použít nejen jako kybernetická zbraň na útok, ale i jako antivirové obranné řešení. Tento výzkum navrhuje, jak zaznamenat a vizualizovat chování X-Ware, když se šíří prostřednictvím systému souborů, sítí a to jak analýzou jeho dynamiky (proces je znám), tak analýzou dat (proces není znám, pozorujeme jen data). Nakonec bylo v disertační práci navrženo paradigma řešení proti malwaru, jež bylo nazváno „Multi agent antivirus system“. Tato práce tedy poskytuje pohled na vývoj robustnějšího, adaptivnějšího a flexibilnějšího obranného systému.460 - Katedra informatikyvyhově
    corecore