172 research outputs found

    Novel Methods for Analyzing and Visualizing Phylogenetic Placements

    Get PDF
    Die DNS (englisch: DNA) bildet die vererbbare Grundlage allen bekannten Lebens auf dem Planeten. Entsprechend wichtig ist ihre "Entschlüsselung" für die Biologie im Allgemeinen, und für die Erforschung der evolutionären Zusammenhänge verschiedener biologischer Artern im Besonderen. In den letzten Jahrzehnten hat eine rasante technologische Entwicklung im Bereich der DNS-Sequenzierung stattgefunden, die auch auf absehbare Zeit noch nicht zum Stillstand kommen wird. Die biologische Forschung hat daher den Bedarf an computer-gestützten Methoden erkannt, sowohl in Bezug auf die Speicherung und Verarbeitung der immensen Datenmengen, die bei der Sequenzierung anfallen, als auch in Bezug auf deren Analyse und Visualisierung. Eine grundlegene Fragestellung ist dabei die nach dem Stammbaum des Lebens, der die evolutionäre Verwandtschaft der Arten beschreibt. Diese Wissenschaft wird Phylogenetik, und die resultierenden Strukturen phylogenetische Bäume genannt. Häufig basieren diese Bäume auf dem Vergleich von DNS-Sequenzen der Arten, mit der Idee, dass Arten mit ähnlicher DNS auch im Baum nah beieinander liegen. Die Berechnung eines solchen Baumes aus DNS-Daten kann als Optimierungsproblem formuliert werden, das durch die stetig wachsende Menge an Daten für die Informatik eine Herausforderung darstellt. Aktuell beschäftigt sich die Mikrobiologie zum Beispiel mit der Erkundung und Erforschung von Proben (Samples), die aus Meereswasser, dem Erdreich, dem menschlichen Körper, und ähnlichen Umgebungen gewonnen wurden: Welche mikrobischen Arten, Bakterien und andere Einzeller, bewohnen diese Umgebungen und Proben? Das zugehörige Forschungsfeld ist die Meta-Genetik. Einen verlässlichen Stammbaum für die aber-millionen an Sequenzen aus solchen Proben zu errechnen ist praktisch unmöglich. Eine Alternative bietet die phylogenetische Platzierung der Sequenzen auf einem gegebenen Referenz-Baum von bekannten Arten (so genanntes phylogenetisches Placement): Hierbei wird ein Stammbaum aus Referenz-Sequenzen bekannter Arten gewählt, der möglichst viel der in den Proben zu erwartenden Artenvielfalt abdeckt, und dann für jede Sequenz aus den Proben die nächste Verwandtschaft innerhalb des Baumes bestimmt. Dies resultiert in einer Zuordnung von Sequenzen auf die Positionen verwandter Arten im Referenz-Baum. Diese Zuordnung kann auch als Verteilung der Sequenzen auf dem Baum verstanden werden: In dieser Interpretation kann man beispielsweise erkennen, welche Arten (und deren Verwandtschaft) besonders häufig in den Proben vertreten sind. Diese Arbeit beschäftigt sich mit neuen Methoden zur Vor- und Nachbereitung, Analyse, und Visualisierung rund um den Kernbereich des phylogenetischen Placements von DNS-Sequenzen. Zunächst stellen wir eine Methode vor, die einen geeigneten Referenz-Baum für die Platzierung liefern kann. Die Methode heißt PhAT (Phylogenetic Automatic (Reference) Trees), und nutzt Datenbanken bekannter DNS-Sequenzen, um geeigenete Referenz-Sequenzen für den Baum zu bestimmen. Die durch PhAT produzierten Bäume sind beispielsweise dann interessant, wenn die in den Proben zu erwartende Artenvielfalt noch nicht bekannt ist: In diesem Fall kann ein breiter Baum, der viele der bekannten Arten abdeckt, helfen, neue, unbekannte Arten zu entdecken. Im gleichen Kapitel stellen wir außerdem zwei Behilfs-Methoden vor, um den Prozess und die Berechnungen der Placements von großen Datensätzen zu beschleunigen und zu ermöglichen. Zum einen stellen wir Multilevel-Placement vor, mit dem besonders große Referenz-Bäume in kleinere, geschachtelte Bäume aufgeteilt werden können, um so schnellere und detalliertere Platzierungen vornehmen können, als auf einem einzelnen großen Baum möglich wären. Zum anderen beschreiben wir eine Pipeline, die durch geschickte Lastverteilung und Vermeidung von Duplikaten den Prozess weiter beschleunigen kann. Dies eignet sich insbesondere für große Datensätze von zu platzierenden Sequenzen, und hat die Berechnungen erst ermöglicht, die wir zum testen der im weiteren vorgestellten Methoden benötigt haben. Im Anschluss stellen wir zwei Methoden vor, um die Placement-Ergebnisse verschiedener Proben miteinander zu vergleichen. Die Methoden, Edge Dispersion und Edge Correlation, visualisieren den Referenz-Baum derart, dass die in Bezug auf die Proben interessanten und relevanten Regionen des Baumes sichtbar werden. Edge Dispersion zeigt dabei Regionen, in denen sich die Häufigkeit der in den Proben vorhandenen mikrobischen Arten besonders stark zwischen den einzelnen Proben unterscheided. Dies kann als erste Erkundung von neuen Datensätzen dienen, und gibt Aufschluss über die Varianz der Häufigkeit bestimmter Arten. Edge Correlation hingegen bezieht zusätzlich Meta-Daten mit ein, die zu den Proben gesammelt wurden. Dadurch können beispielsweise Abhängigkeiten zwischen Häufigkeiten von Arten und Faktoren wie dem pH-Wert des Bodens oder dem Nitrat-Gehalt des Wassers, aus dem die Proben stammen, aufgezeigt werden. Es hat damit ähnlichkeiten zu einer bestehenden Methode names Edge PCA, die ebenfalls relevante Regionen des Baumen identifizieren kann, allerdings die vorhandenen Meta-Daten nur indirekt einbeziehen kann. Eine weitere Fragestellung ist die Gruppierung (Clustering) von Proben anhand von Gemeinsamkeiten, wie beispielweise einer ähnlichen Verteilungen der Sequenzen auf dem Referenz-Baum. Anhand geeigneter Distanz-Maße wie der Kantorovich-Rubinstein-Distanz (KR-Distanz) können ähnlichkeiten zwischen Proben quantifiziert werden, und somit ein Clustering erstellt werden. Für große Datensätze mit hunderten und tausenden von einzlnen Proben stoßen bestehende Methoden für diesen Einsatzzweck, wie zum Beispiel das so genannte Squash Clustering, an ihre Grenzen. Wir haben daher die kk-means-Methode derart erweitert, dass sie für Placement-Daten genutzt werden kann. Dazu präsentieren wir zwei Methoden, Phylogenetic kk-means und Imbalance kk-means, die verschiedene Distanzmaße zwischen Proben (KR-Distanz, und ein weiteres geeignetes Maß) nutzen, um Bäume mit ähnlichen Verteilungen von platzierten Sequenzen zu gruppieren. Sie betrachten jede Probe als einen Datenpunkt, und nutzen die zugrunde liegende Struktur des Referenz-Baumes für die Berechnungen. Mit diesen Methoden können auch Datensätze mit zehntausenden Proben verarbeitet werden, und Clusterings und ähnlichkeiten von Proben erkannt und visualisiert werden. Wir haben außerdem ein Konzept namens Balances für Placement-Daten adaptiert, welches ursprünglich für so genannte OTU-Sequenzen (Operational Taxonomic Units) entwickelt wurde. Balances erlauben eine Beschreibung des Referenz-Baumes und der darauf platzierten Sequenzen, die ganze Gruppen von Referenz-Arten zusammenfasst, statt jede Art einzeln in die Berechnungen einfließen zu lassen. Diese Beschreibung der Daten bietet verschiedene Vorteile für die darauf basierenden Analysen, wie zum Beispiel eine Robustheit gegenüber der exakten Wahl der Referenz-Sequenzen, und einer anschaulichen Beschreibung und Visualisierung der Ergebnisse. Insbesondere aus mathematischer Sicht sind Balances für die Analyse interessant, da sie problematische Artefakte aufgrund der kompositionellen Natur meta-genetischer Daten beheben. Im Zuge dieser Arbeit dienen Balances hauptsächlich als Zwischenschritt zur Daten-Repräsentation. Eine Anwendung von Balances ist die so genannte Phylofactorization. Diese recht neue Methode teilt einen gegebenen Baum derart in Sub-Bäume ein, dass jeder Sub-Baum eine Gruppe von Arten darstellt, die in Bezug auf gegebene Meta-Daten pro Probe relevant sind. Dadurch können beispielsweise Gruppen identifiziert werden, deren evolutionäre Merkmale sich in Abhängigkeit von Meta-Daten wie pH-Wert angepasst haben im Vergleich zu anderen Gruppen. Dies ist ähnlich zur oben genannten Edge Correlation, aber kann zum einen durch geschickte mathematische Ansätze (insbesondere der Nutzung von Generalized Linear Models) mehrere Meta-Daten gleichzeitig einbeziehen, und zum anderen auch verschachtelte Gruppen finden. Die zugrunde liegenden Ideen dieser Methoden bieten einen großen Spielraum sowohl für Analysen von Daten, als auch für Weiterentwicklungen und Ergänzungen für verwandte Fragestellungen. Wir haben diese Methode für Placement-Daten adaptiert und erweitert, und stellen diese Variante, genannt Placement-Factorization, vor. Im Zuge dieser Adaption haben wir außerdem verschiedene ergänzende Berechnungen und Visalisierungen entwickelt, die auch für die ursprüngliche Phylofactorization nützlich sind. Alle genannten neuen Methoden wurden ausführlich getestet in Bezug auf ihre Eignung zur Erforschung von mikrobiologischen Zusammenhängen. Wir haben dazu verschiedene bekannte Datzensätze von DNS-Sequenzen aus Wasser- und Bodenproben, sowie Proben des menschlichen Mikrobioms, verwendet und diese auf geeigneten Referenz-Bäumen platziert. Anhand dieser Daten haben wir zum einen die Plausibilität der durch unsere Analysen erzielten Ergebnisse geprüft, als auch Vergleiche der Ergebnisse mit ähnlichen, etablierten Methoden vorgenommen. Sämtliche Analysen, Visualisierungen, und Vergleiche werden in den jeweils entsprechenden Kapiteln vorgestellt, und die Ergebnisse dargestellt. Alle Tests zeigen, dass unsere Methoden auf den getesteten Datensätzen zu Resultaten führen, die konsistent mit anderen Analysen sind, und geeignet sind, um neue biologische Erkenntnisse zu gewinnen. Sämtliche hier vorgestellten Methoden sind in unserer Software-Bibliothek genesis implementiert, die wir im Zuge dieser Arbeit entwickelt haben. Die Bibliothek ist in modernem C++11 geschrieben, hat einen modularen und funktions-orientierten Aufbau, ist auf Speichernutzung und Rechengeschwindigkeit optimiert, und nutzt vorhandene Multi-Prozessor-Umgebungen. Sie eignet sich daher sowohl für schnelle Tests von Prototypen, als auch zur Entwicklung von Analyse-Software für Endanwender. Wir haben genesis bereits erfolgreich in vielen unserer Projekte eingesetzt. Insbesondere bieten wir sämtliche hier präsentierten Methoden über unser Software-Tool gappa an, das intern auf genesis basiert. Das Tool stellt einen einfachen Kommandozeilen-Zugriff auf die vorhandenen Analysemethoden bereit, und bietet ausreichend Optionen für die Analysen der meisten End-Anwender. Im abschließenden Kapitel wagen wir einen Ausblick in weitere Forschungsmöglichkeiten im Bereich der Methoden-Entwicklung für meta-genetische Fragestellungen im Allgemeinen, und der placement-basierten Methoden im Speziellen. Wir benennen verschiedene Herausforderungen in Bezug auf die Nutzbarkeit solcher Methoden für Anwender und ihrer Skalierbarkeit für immer größer werdende Datensätze. Außerdem schlagen wir verschiedene weitergehende Ansätze vor, die zum Beispiel auf neuronalen Netzwerken und Deep Learning basieren könnten. Mit aktuellen Datensätzen wären solche Methoden nicht robust trainierbar; durch das in Zukuft zu erwartenden Wachstum an Daten kann dies allerdings bald in den Bereich des Möglichen kommen. Schließlich identifizierenden wir einige tiefer gehende Forschungsfragen aus der Biologie und Medizin, bei deren Beantwortung unsere Methoden in Zukunft helfen können

    Recent Advances in Social Data and Artificial Intelligence 2019

    Get PDF
    The importance and usefulness of subjects and topics involving social data and artificial intelligence are becoming widely recognized. This book contains invited review, expository, and original research articles dealing with, and presenting state-of-the-art accounts pf, the recent advances in the subjects of social data and artificial intelligence, and potentially their links to Cyberspace
    corecore