130 research outputs found

    Security of Electrical, Optical and Wireless On-Chip Interconnects: A Survey

    Full text link
    The advancement of manufacturing technologies has enabled the integration of more intellectual property (IP) cores on the same system-on-chip (SoC). Scalable and high throughput on-chip communication architecture has become a vital component in today's SoCs. Diverse technologies such as electrical, wireless, optical, and hybrid are available for on-chip communication with different architectures supporting them. Security of the on-chip communication is crucial because exploiting any vulnerability would be a goldmine for an attacker. In this survey, we provide a comprehensive review of threat models, attacks, and countermeasures over diverse on-chip communication technologies as well as sophisticated architectures.Comment: 41 pages, 24 figures, 4 table

    Content Poisoning in Named Data Networking: Comprehensive Characterization of real Deployment

    Get PDF
    International audienceInformation Centric Networking (ICN) is seen as a promising solution to re-conciliate the Internet usage with its core architecture. However, to be considered as a realistic alternative to IP, ICN must evolve from a pure academic proposition deployed in test environments to an operational solution in which security is assessed from the protocol design to its running implementation. Among ICN solutions, Named Data Networking (NDN), together with its reference implementation NDN Forwarding Daemon (NFD), acts as the most mature proposal but its vulnerability against the Content Poisoning Attack (CPA) is considered as a critical threat that can jeopardize this architecture. So far, existing works in that area have fallen into the pit of coupling a biased and partial phenomenon analysis with a proposed solution, hence lacking a comprehensive understanding of the attack's feasibility and impact in a real network. In this paper, we demonstrate through an experimental measurement campaign that CPA can easily and widely affect NDN. Our contribution is threefold: (1) we propose three realistic attack scenarios relying on both protocol design and implementation weaknesses; (2) we present their implementation and evaluation in a testbed based on the latest NFD version; and (3) we analyze their impact on the different ICN nodes (clients, access and core routers, content provider) composing a realistic topology

    An efficient pending interest table control management in named data network

    Get PDF
    Named Data Networking (NDN) is an emerging Internet architecture that employs a new network communication model based on the identity of Internet content. Its core component, the Pending Interest Table (PIT) serves a significant role of recording Interest packet information which is ready to be sent but in waiting for matching Data packet. In managing PIT, the issue of flow PIT sizing has been very challenging due to massive use of long Interest lifetime particularly when there is no flexible replacement policy, hence affecting PIT performance. The aim of this study is to propose an efficient PIT Control Management (PITCM) approach to be used in handling incoming Interest packets in order to mitigate PIT overflow thus enhancing PIT utilization and performance. PITCM consists of Adaptive Virtual PIT (AVPIT) mechanism, Smart Threshold Interest Lifetime (STIL) mechanism and Highest Lifetime Least Request (HLLR) policy. The AVPIT is responsible for obtaining early PIT overflow prediction and reaction. STIL is meant for adjusting lifetime value for incoming Interest packet while HLLR is utilized for managing PIT entries in efficient manner. A specific research methodology is followed to ensure that the work is rigorous in achieving the aim of the study. The network simulation tool is used to design and evaluate PITCM. The results of study show that PITCM outperforms the performance of standard NDN PIT with 45% higher Interest satisfaction rate, 78% less Interest retransmission rate and 65% less Interest drop rate. In addition, Interest satisfaction delay and PIT length is reduced significantly to 33% and 46%, respectively. The contribution of this study is important for Interest packet management in NDN routing and forwarding systems. The AVPIT and STIL mechanisms as well as the HLLR policy can be used in monitoring, controlling and managing the PIT contents for Internet architecture of the future

    Proximity coherence for chip-multiprocessors

    Get PDF
    Many-core architectures provide an efficient way of harnessing the growing numbers of transistors available in modern fabrication processes; however, the parallel programs run on these platforms are increasingly limited by the energy and latency costs of communication. Existing designs provide a functional communication layer but do not necessarily implement the most efficient solution for chip-multiprocessors, placing limits on the performance of these complex systems. In an era of increasingly power limited silicon design, efficiency is now a primary concern that motivates designers to look again at the challenge of cache coherence. The first step in the design process is to analyse the communication behaviour of parallel benchmark suites such as Parsec and SPLASH-2. This thesis presents work detailing the sharing patterns observed when running the full benchmarks on a simulated 32-core x86 machine. The results reveal considerable locality of shared data accesses between threads with consecutive operating system assigned thread IDs. This pattern, although of little consequence in a multi-node system, corresponds to strong physical locality of shared data between adjacent cores on a chip-multiprocessor platform. Traditional cache coherence protocols, although often used in chip-multiprocessor designs, have been developed in the context of older multi-node systems. By redesigning coherence protocols to exploit new patterns such as the physical locality of shared data, improving the efficiency of communication, specifically in chip-multiprocessors, is possible. This thesis explores such a design – Proximity Coherence – a novel scheme in which L1 load misses are optimistically forwarded to nearby caches via new dedicated links rather than always being indirected via a directory structure.EPSRC DTA research scholarshi

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    5G Security Challenges and Solutions: A Review by OSI Layers

    Get PDF
    The Fifth Generation of Communication Networks (5G) envisions a broader range of servicescompared to previous generations, supporting an increased number of use cases and applications. Thebroader application domain leads to increase in consumer use and, in turn, increased hacker activity. Dueto this chain of events, strong and efficient security measures are required to create a secure and trustedenvironment for users. In this paper, we provide an objective overview of5G security issues and theexisting and newly proposed technologies designed to secure the5G environment. We categorize securitytechnologies usingOpen Systems Interconnection (OSI)layers and, for each layer, we discuss vulnerabilities,threats, security solutions, challenges, gaps and open research issues. While we discuss all sevenOSIlayers, the most interesting findings are in layer one, the physical layer. In fact, compared to other layers,the physical layer between the base stations and users’ device presents increased opportunities for attackssuch as eavesdropping and data fabrication. However, no singleOSI layer can stand on its own to provideproper security. All layers in the5G must work together, providing their own unique technology in an effortto ensure security and integrity for5G data

    Path Protection Switching in Information Centric Networks (ICN)

    Get PDF
    Since its formation, the Internet has experienced tremendous growth, constantly increasing traffic and new applications, including voice and video. However, it still keeps its original architecture drafted almost 40 years ago built on the end-to-end principle; this has proven to be problematic when there are failures as routing convergence is slow for unicast networks and even slower for multicast which has to rely upon slow multicast routing as no protection switching exists for multicast. This thesis investigates protection in an alternative approach for network communication, namely information centric networking (ICN) using the architecture proposed by the PSIRP/PURSUIT projects. This uses Bloom Filters to allow both unicast and multicast forwarding. However, the PSIRP/PURSUIT ICN approach did not investigate protection switching and this problem forms the main aim of this thesis. The work builds on the research by Grover and Stamatelakis who introduced the concept of pre-configured protection p-cycles in 2000 for optical networks and, with modification, applicable to unicast IP or packet networks. This thesis shows how the p-cycle concept can be directly applied to packet networks that use PSIRP/PURSUIT ICN and extends the approach to encompass both unicast and multicast protection switching. Furthermore, it shows how the chosen p-cycles can be optimised to reduce the redundancy overhead introduced by the protection mechanism. The work evaluates the approach from two aspects, the first is how the proposed approach compares to existing switching state and traffic in an MPLS multicast architecture. The second considers the redundancy overhead in three known network topologies for synthetic traffic matrices. The thesis is the first work to demonstrate the efficiency of Bloom filter based switching for multicast (and unicast) protection switching
    corecore