257 research outputs found

    Deep learning for retail product recognition: challenges and techniques

    Get PDF
    Taking time to identify expected products and waiting for the checkout in a retail store are common scenes we all encounter in our daily lives. The realization of automatic product recognition has great significance for both economic and social progress because it is more reliable than manual operation and time-saving. Product recognition via images is a challenging task in the field of computer vision. It receives increasing consideration due to the great application prospect, such as automatic checkout, stock tracking, planogram compliance, and visually impaired assistance. In recent years, deep learning enjoys a flourishing evolution with tremendous achievements in image classification and object detection. This article aims to present a comprehensive literature review of recent research on deep learning-based retail product recognition. More specifically, this paper reviews the key challenges of deep learning for retail product recognition and discusses potential techniques that can be helpful for the research of the topic. Next, we provide the details of public datasets which could be used for deep learning. Finally, we conclude the current progress and point new perspectives to the research of related fields

    Context-aware confidence sets for fine-grained product recognition

    Get PDF
    We present a new approach for fine-grained classification of retail products, which learns and exploits statistical context information about likely product arrangements on shelves, incorporates visual hierarchies across brands, and returns recognition results as “confidence sets” that are guaranteed to contain the true class at a given confidence level. Our system consists of three important components: 1) a nested hierarchy of product classes are automatically constructed based on visual similarities, 2) a confidence set predictor is trained based on class posteriors by using coarse-to-fine binary classifiers to discriminate each nested cluster of the hierarchy from the remainder of classes and a Bayesian network (BN) model that encodes the joint distribution of classifier scores with the fine-level class variable, and 3) n hidden Markov model (HMM) is trained with nested hidden states from the class hierarchy to model spatial transition across the nodes of product class hierarchy and resolve errors in the context-free confidence set results. Novel aspects of the proposed method include 1) combining confidence sets and context information via a HMM, 2) applying this concept to fine grained recognition of products arranged in retail shelves, and 3) presenting experimental results on four large datasets, collected from actual retail stores. We compare our approach with existing confidence set approaches and state-of-the-art convolutional neural networks classifiers including SENet-154, DenseNet-161, B-CNN, and Inception-Resnet-v2. Our approach performs comparably or better than state-of-the-art deep classifiers and exhibits high accuracy for relatively small confidence set sizes

    Statistical methods for fine-grained retail product recognition

    Get PDF
    In recent years, computer vision has become a major instrument in automating retail processes with emerging smart applications such as shopper assistance, visual product search (e.g., Google Lens), no-checkout stores (e.g., Amazon Go), real-time inventory tracking, out-of-stock detection, and shelf execution. At the core of these applications lies the problem of product recognition, which poses a variety of new challenges in contrast to generic object recognition. Product recognition is a special instance of fine-grained classification. Considering the sheer diversity of packaged goods in a typical hypermarket, we are confronted with up to tens of thousands of classes, which, particularly if under the same product brand, tend to have only minute visual differences in shape, packaging texture, metric size, etc., making them very difficult to discriminate from one another. Another challenge is the limited number of available datasets, which either have only a few training examples per class that are taken under ideal studio conditions, hence requiring cross-dataset generalization, or are captured from the shelf in an actual retail environment and thus suffer from issues like blur, low resolution, occlusions, unexpected backgrounds, etc. Thus, an effective product classification system requires substantially more information in addition to the knowledge obtained from product images alone. In this thesis, we propose statistical methods for a fine-grained retail product recognition. In our first framework, we propose a novel context-aware hybrid classification system for the fine-grained retail product recognition problem. In the second framework, state-of-the-art convolutional neural networks are explored and adapted to fine-grained recognition of products. The third framework, which is the most significant contribution of this thesis, presents a new approach for fine-grained classification of retail products that learns and exploits statistical context information about likely product arrangements on shelves, incorporates visual hierarchies across brands, and returns recognition results as "confidence sets" that are guaranteed to contain the true class at a given confidence leve

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens

    AI Knowledge Transfer from the University to Society

    Get PDF
    AI Knowledge Transfer from the University to Society: Applications in High-Impact Sectors brings together examples from the "Innovative Ecosystem with Artificial Intelligence for Andalusia 2025" project at the University of Seville, a series of sub-projects composed of research groups and different institutions or companies that explore the use of Artificial Intelligence in a variety of high-impact sectors to lead innovation and assist in decision-making. Key Features Includes chapters on health and social welfare, transportation, digital economy, energy efficiency and sustainability, agro-industry, and tourism Great diversity of authors, expert in varied sectors, belonging to powerful research groups from the University of Seville with proven experience in the transfer of knowledge to the productive sector and agents attached to the AndalucĂ­a TECH Campu

    Deep learning in food category recognition

    Get PDF
    Integrating artificial intelligence with food category recognition has been a field of interest for research for the past few decades. It is potentially one of the next steps in revolutionizing human interaction with food. The modern advent of big data and the development of data-oriented fields like deep learning have provided advancements in food category recognition. With increasing computational power and ever-larger food datasets, the approach’s potential has yet to be realized. This survey provides an overview of methods that can be applied to various food category recognition tasks, including detecting type, ingredients, quality, and quantity. We survey the core components for constructing a machine learning system for food category recognition, including datasets, data augmentation, hand-crafted feature extraction, and machine learning algorithms. We place a particular focus on the field of deep learning, including the utilization of convolutional neural networks, transfer learning, and semi-supervised learning. We provide an overview of relevant studies to promote further developments in food category recognition for research and industrial applicationsMRC (MC_PC_17171)Royal Society (RP202G0230)BHF (AA/18/3/34220)Hope Foundation for Cancer Research (RM60G0680)GCRF (P202PF11)Sino-UK Industrial Fund (RP202G0289)LIAS (P202ED10Data Science Enhancement Fund (P202RE237)Fight for Sight (24NN201);Sino-UK Education Fund (OP202006)BBSRC (RM32G0178B8

    TecnologĂ­a para Tiendas Inteligentes

    Get PDF
    Trabajo de Fin de Grado en Doble Grado en Ingeniería Informática y Matemáticas, Facultad de Informática UCM, Departamento de Ingeniería del Software e Inteligencia Artificial, Curso 2020/2021Smart stores technologies exemplify how Artificial Intelligence and Internet of Things can effectively join forces to shape the future of retailing. With an increasing number of companies proposing and implementing their own smart store concepts, such as Amazon Go or Tao Cafe, a new field is clearly emerging. Since the technologies used to build their infrastructure offer significant competitive advantages, companies are not publicly sharing their own designs. For this reason, this work presents a new smart store model named Mercury, which aims to take the edge off of the lack of public and accessible information and research documents in this field. We do not only introduce a comprehensive smart store model, but also work-through a feasible detailed implementation so that anyone can build their own system upon it.Las tecnologías utilizadas en las tiendas inteligentes ejemplifican cómo la Inteligencia Artificial y el Internet de las Cosas pueden unir, de manera efectiva, fuerzas para transformar el futuro de la venta al por menor. Con un creciente número de empresas proponiendo e implementando sus propios conceptos de tiendas inteligentes, como Amazon Go o Tao Cafe, un nuevo campo está claramente emergiendo. Debido a que las tecnologías utilizadas para construir sus infraestructuras ofrecen una importante ventaja competitiva, las empresas no están compartiendo públicamente sus diseños. Por esta razón, este trabajo presenta un nuevo modelo de tienda inteligente llamado Mercury, que tiene como objetivo mitigar la falta de información pública y accesible en este campo. No solo introduciremos un modelo general y completo de tienda inteligente, sino que también proponemos una implementación detallada y concreta para que cualquier persona pueda construir su propia tienda inteligente siguiendo nuestro modelo.Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEunpu

    Sex, Drugs, Trump and Birth Control

    Full text link
    This Article explores both medical and legal reasons as to why OTC access to contraception is needed and justified. It also applies current changes in the government and discusses how the repeal of the Affordable Care Act (ACA) could substantially affect birth control. Alternative and traditional options are presented and analyzed to determine their viability
    • …
    corecore