117 research outputs found

    Higher order feature extraction and selection for robust human gesture recognition using CSI of COTS Wi-Fi devices

    Get PDF
    Device-free human gesture recognition (HGR) using commercial o the shelf (COTS) Wi-Fi devices has gained attention with recent advances in wireless technology. HGR recognizes the human activity performed, by capturing the reflections ofWi-Fi signals from moving humans and storing them as raw channel state information (CSI) traces. Existing work on HGR applies noise reduction and transformation to pre-process the raw CSI traces. However, these methods fail to capture the non-Gaussian information in the raw CSI data due to its limitation to deal with linear signal representation alone. The proposed higher order statistics-based recognition (HOS-Re) model extracts higher order statistical (HOS) features from raw CSI traces and selects a robust feature subset for the recognition task. HOS-Re addresses the limitations in the existing methods, by extracting third order cumulant features that maximizes the recognition accuracy. Subsequently, feature selection methods derived from information theory construct a robust and highly informative feature subset, fed as input to the multilevel support vector machine (SVM) classifier in order to measure the performance. The proposed methodology is validated using a public database SignFi, consisting of 276 gestures with 8280 gesture instances, out of which 5520 are from the laboratory and 2760 from the home environment using a 10 5 cross-validation. HOS-Re achieved an average recognition accuracy of 97.84%, 98.26% and 96.34% for the lab, home and lab + home environment respectively. The average recognition accuracy for 150 sign gestures with 7500 instances, collected from five di erent users was 96.23% in the laboratory environment.Taylor's University through its TAYLOR'S PhD SCHOLARSHIP Programmeinfo:eu-repo/semantics/publishedVersio

    Non-invasive detection of moving and stationary human with WiFi

    Get PDF
    Non-invasive human sensing based on radio signals has attracted a great deal of research interest and fostered a broad range of innovative applications of localization, gesture recognition, smart health-care, etc., for which a primary primitive is to detect human presence. Previous works have studied the detection of moving humans via signal variations caused by human movements. For stationary people, however, existing approaches often employ a prerequisite scenario-tailored calibration of channel profile in human-free environments. Based on in-depth understanding of human motion induced signal attenuation reflected by PHY layer channel state information (CSI), we propose DeMan, a unified scheme for non-invasive detection of moving and stationary human on commodity WiFi devices. DeMan takes advantage of both amplitude and phase information of CSI to detect moving targets. In addition, DeMan considers human breathing as an intrinsic indicator of stationary human presence and adopts sophisticated mechanisms to detect particular signal patterns caused by minute chest motions, which could be destroyed by significant whole-body motion or hidden by environmental noises. By doing this, DeMan is capable of simultaneously detecting moving and stationary people with only a small number of prior measurements for model parameter determination, yet without the cumbersome scenario-specific calibration. Extensive experimental evaluation in typical indoor environments validates the great performance of DeMan in various human poses and locations and diverse channel conditions. Particularly, DeMan provides a detection rate of around 95% for both moving and stationary people, while identifies human-free scenarios by 96%, all of which outperforms existing methods by about 30%.Department of Computin

    Employing multi-modal sensors for personalised smart home health monitoring.

    Get PDF
    Smart home systems are employed worldwide for a variety of automated monitoring tasks. FITsense is a system that performs personalised smart home health monitoring using sensor data. In this thesis, we expand upon this system by identifying the limits of health monitoring using simple IoT sensors, and establishing deployable solutions for new rich sensing technologies. The FITsense system collects data from FitHomes and generates behavioural insights for health monitoring. To allow the system to expand to arbitrary home layouts, sensing applications must be delivered while relying on sparse "ground truth" data. An enhanced data representation was tested for improving activity recognition performance by encoding observed temporal dependencies. Experiments showed an improvement in activity recognition accuracy over baseline data representations with standard classifiers. Channel State Information (CSI) was chosen as our rich sensing technology for its ambient nature and potential deployability. We developed a novel Python toolkit, called CSIKit, to handle various CSI software implementations, including automatic detection for off-the-shelf CSI formats. Previous researchers proposed a method to address AGC effects on COTS CSI hardware, which we tested and found to improve correlation with a baseline without AGC. This implementation was included in the public release of CSIKit. Two sensing applications were delivered using CSIKit to demonstrate its functionality. Our statistical approach to motion detection with CSI data showed a 32% increase in accuracy over an infrared sensor-based solution using data from 2 unique environments. We also demonstrated the first CSI activity recognition application on a Raspberry Pi 4, which achieved an accuracy of 92% with 11 activity classes. An application was then trained to support movement detection using data from all COTS CSI hardware. This was combined with our signal divider implementation to compare CSI wireless and sensing performance characteristics. The IWL5300 exhibited the most consistent wireless performance, while the ESP32 was found to produce viable CSI data for sensing applications. This establishes the ESP32 as a low-cost high-value hardware solution for CSI sensing. To complete this work, an in-home study was performed using real-world sensor data. An ESP32-based CSI sensor was developed to be integrated into our IoT network. This sensor was tested in a FitHome environment to identify how the data from our existing simple sensors could aid sensor development. We performed an experiment to demonstrate that annotations for CSI data could be gathered with infrared motion sensors. Results showed that our new CSI sensor collected real-world data of similar utility to that collected manually in a controlled environment

    Respiratory Rate Estimation Using WiFi Channel State Information - A Machine Learning Approach

    Get PDF
    Respiratory rate (RR) is an important vital sign for diagnosing and treating a number of medical conditions. Current respiration monitoring systems require that a special device is continuously attached to the human body. However, contactless respiration monitoring systems have recently been developed to overcome this inconvenience. Research has shown that channel state information (CSI) measured by WiFi devices can be used for estimating RR. Although pattern-based respiration detection has been used to extract RR from periodic changes in CSI, systems based on this method do not perform well when channel conditions are not favorable. This thesis highlights newly introduced learning-based approaches used for RR estimation. Off-the-shelf WiFi devices were used to collect fine-grained wireless CSI data, which was then used to train and evaluate machine learning models. Results show that classification algorithms, including KNN, SVM, Random Forest, Logistic Regression and MLP, achieve over 96% accuracy when predicting RR. Regression models were compared to an existing pattern-based system, demonstrating that the majority of regression models have better performance when estimating RR. For instance, Logistic Regression’s Root Mean Square Error (RMSE) is 0.35, while pattern-based system’s RMSE is 2.7. It is important to note that classification and regression models cannot be generalized, nor can they accurately predict respiratory rate using the data collected from a new and previously unseen subject. To improve and make the models more generalizable, data used to train the models must be collected from a larger number of subjects
    corecore