10,185 research outputs found

    Bayesian model selection in logistic regression for the detection of adverse drug reactions

    Full text link
    Motivation: Spontaneous adverse event reports have a high potential for detecting adverse drug reactions. However, due to their dimension, exploring such databases requires statistical methods. In this context, disproportionality measures are used. However, by projecting the data onto contingency tables, these methods become sensitive to the problem of co-prescriptions and masking effects. Recently, logistic regressions have been used with a Lasso type penalty to perform the detection of associations between drugs and adverse events. However, the choice of the penalty value is open to criticism while it strongly influences the results. Results: In this paper, we propose to use a logistic regression whose sparsity is viewed as a model selection challenge. Since the model space is huge, a Metropolis-Hastings algorithm carries out the model selection by maximizing the BIC criterion. Thus, we avoid the calibration of penalty or threshold. During our application on the French pharmacovigilance database, the proposed method is compared to well established approaches on a reference data set, and obtains better rates of positive and negative controls. However, many signals are not detected by the proposed method. So, we conclude that this method should be used in parallel to existing measures in pharmacovigilance.Comment: 7 pages, 3 figures, submitted to Biometrical Journa

    Early Detection of Adverse Drug Reaction Signals by Association Rule Mining Using Large-Scale Administrative Claims Data

    Get PDF
    INTRODUCTION: Adverse drug reactions (ADRs) are a leading cause of mortality worldwide and should be detected promptly to reduce health risks to patients. A data-mining approach using large-scale medical records might be a useful method for the early detection of ADRs. Many studies have analyzed medical records to detect ADRs; however, most of them have focused on a narrow range of ADRs, limiting their usefulness. OBJECTIVE: This study aimed to identify methods for the early detection of a wide range of ADR signals. METHODS: First, to evaluate the performance in signal detection of ADRs by data-mining, we attempted to create a gold standard based on clinical evidence. Second, association rule mining (ARM) was applied to patient symptoms and medications registered in claims data, followed by evaluating ADR signal detection performance. RESULTS: We created a new gold standard consisting of 92 positive and 88 negative controls. In the assessment of ARM using claims data, the areas under the receiver-operating characteristic curve and the precision-recall curve were 0.80 and 0.83, respectively. If the detection criteria were defined as lift > 1, conviction > 1, and p-value < 0.05, ARM could identify 156 signals, of which 90 were true positive controls (sensitivity: 0.98, specificity: 0.25). Evaluation of the capability of ARM with short periods of data revealed that ARM could detect a greater number of positive controls than the conventional analysis method. CONCLUSIONS: ARM of claims data may be effective in the early detection of a wide range of ADR signals

    Comparison of algorithms that detect drug side effects using electronic healthcare databases

    Get PDF
    The electronic healthcare databases are starting to become more readily available and are thought to have excellent potential for generating adverse drug reaction signals. The Health Improvement Network (THIN) database is an electronic healthcare database containing medical information on over 11 million patients that has excellent potential for detecting ADRs. In this paper we apply four existing electronic healthcare database signal detecting algorithms (MUTARA, HUNT, Temporal Pattern Discovery and modified ROR) on the THIN database for a selection of drugs from six chosen drug families. This is the first comparison of ADR signalling algorithms that includes MUTARA and HUNT and enabled us to set a benchmark for the adverse drug reaction signalling ability of the THIN database. The drugs were selectively chosen to enable a comparison with previous work and for variety. It was found that no algorithm was generally superior and the algorithms’ natural thresholds act at variable stringencies. Furthermore, none of the algorithms perform well at detecting rare ADRs

    A novel semi-supervised algorithm for rare prescription side effect discovery

    Get PDF
    Drugs are frequently prescribed to patients with the aim of improving each patient's medical state, but an unfortunate consequence of most prescription drugs is the occurrence of undesirable side effects. Side effects that occur in more than one in a thousand patients are likely to be signalled efficiently by current drug surveillance methods, however, these same methods may take decades before generating signals for rarer side effects, risking medical morbidity or mortality in patients prescribed the drug while the rare side effect is undiscovered. In this paper we propose a novel computational meta-analysis framework for signalling rare side effects that integrates existing methods, knowledge from the web, metric learning and semi-supervised clustering. The novel framework was able to signal many known rare and serious side effects for the selection of drugs investigated, such as tendon rupture when prescribed Ciprofloxacin or Levofloxacin, renal failure with Naproxen and depression associated with Rimonabant. Furthermore, for the majority of the drug investigated it generated signals for rare side effects at a more stringent signalling threshold than existing methods and shows the potential to become a fundamental part of post marketing surveillance to detect rare side effects

    Chapter Evolving Roles of Spontaneous Reporting Systems to Assess and Monitor Drug Safety

    Get PDF
    This chapter aims to describe current and emerging roles of spontaneous reporting systems (SRSs) for assessing and monitoring drug safety. Moreover, it offers a perspective on the near future, which entails the so-called era of Big Data, keeping in mind both regulator and researcher viewpoints. After a panorama on key data sources and analyses of post-marketing data of adverse drug reactions, a critical appraisal of methodological issues and debated future applications of SRSs will be presented, including the exploitation and challenges in evidence integration (i.e., merging and combining heterogeneous sources of data into a unique indicator of risk) and patient’s reporting via social media. Finally, a call for a responsible use of these studies is offered, with a proposal on a set of minimum requirements to assess the quality of disproportionality analysis in terms of study conception, performing and reporting
    corecore