171,898 research outputs found

    Fundamental structures of dynamic social networks

    Get PDF
    Social systems are in a constant state of flux with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding spreading of influence or diseases, formation of friendships, and the productivity of teams. While there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the micro-dynamics of social networks. Here we explore the dynamic social network of a densely-connected population of approximately 1000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geo-location, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-minute time slices we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores are preceded by coordination behavior in the communication networks, and demonstrating that social behavior can be predicted with high precision.Comment: Main Manuscript: 16 pages, 4 figures. Supplementary Information: 39 pages, 34 figure

    Locally embedded presages of global network bursts

    Full text link
    Spontaneous, synchronous bursting of neural population is a widely observed phenomenon in nervous networks, which is considered important for functions and dysfunctions of the brain. However, how the global synchrony across a large number of neurons emerges from an initially non-bursting network state is not fully understood. In this study, we develop a new state-space reconstruction method combined with high-resolution recordings of cultured neurons. This method extracts deterministic signatures of upcoming global bursts in "local" dynamics of individual neurons during non-bursting periods. We find that local information within a single-cell time series can compare with or even outperform the global mean field activity for predicting future global bursts. Moreover, the inter-cell variability in the burst predictability is found to reflect the network structure realized in the non-bursting periods. These findings demonstrate the deterministic mechanisms underlying the locally concentrated early-warnings of the global state transition in self-organized networks

    Expected properties of the Two-Point Autocorrelation Function of the IGM

    Full text link
    Recent analyses of the fluctuations of the soft Diffuse X-ray Background (DXB) have provided indirect detection of a component consistent with the elusive Warm Hot Intergalactic Medium (WHIM). In this work we use theoretical predictions obtained from hydrodynamical simulations to investigate the angular correlation properties of the WHIM in emission and assess the possibility of indirect detection with next-generation X-ray missions. Our results indicate that the angular correlation signal of the WHIM is generally weak but dominates the angular correlation function of the DXB outside virialized regions. Its indirect detection is possible but requires rather long exposure times [0.1-1] Ms, large (~1{\deg} x1{\deg}) fields of view and accurate subtraction of isotropic fore/background contributions, mostly contributed by Galactic emission. The angular correlation function of the WHIM is positive for {\theta} < 5' and provides limited information on its spatial distribution. A satisfactory characterization of the WHIM in 3D can be obtained through spatially resolved spectroscopy. 1 Ms long exposures with next generation detectors will allow to detect ~400 O VII+O VIII X-ray emission systems that we use to trace the spatial distribution of the WHIM. We predict that these observations will allow to estimate the WHIM correlation function with high statistical significance out to ~10 Mpc h^-1 and characterize its dynamical state through the analysis of redshift-space distortions. The detectable WHIM, which is typically associated with the outskirts of virialized regions rather than the filaments has a non-zero correlation function with slope {\gamma} = -1.7 \pm 0.1 and correlation length r0 = 4.0 \pm 0.1 Mpc h^-1 in the range r = [4.5, 12] Mpc h^-1. Redshift space distances can be measured to assess the dynamical properties of the gas, typically infalling onto large virialized structures.Comment: 17 pages, 2 tables, 11 figures, Final version, accepted for publication on MNRA

    How accurately can the SZ effect measure peculiar cluster velocities and bulk flows?

    Full text link
    The Sunyaev-Zel'dovich effect is a powerful tool for cosmology that can be used to measure the radial peculiar velocities of galaxy clusters, and thus to test, and constrain, theories of structure formation and evolution. This requires, in principle, an accurate measurement of the effect, a good separation between the Sunyaev-Zel'dovich components, and a good understanding of the sources contributing to the signal and their effect on the measured velocity. In this study, we evaluate the error in the individual radial peculiar velocities determined with Sunyaev-Zel'dovich measurements. We estimate, for three cosmological models, the errors induced by the major contributing signals (primary Cosmic Microwave Background anisotropies, Sunyaev-Zel'dovich effect due to the background cluster population, residuals from component separation and instrumental noise). We generalise our results to estimate the error in the bulk velocity on large scales. In this context, we investigate the limitation due to the Sunyaev-Zel'dovich source (or spatial) confusion in a Planck-like instrumental configuration. Finally, we propose a strategy based on the future all-sky Sunyaev-Zel'dovich survey, that will be provided by the Planck mission, to measure accurately the bulk velocities on large scales up to redshift 1, or more.Comment: 24 pages, 8 figures, revised version of an article submitted to Astronomy and Astrophysics (in referee style

    CMBPol Mission Concept Study: Foreground Science Knowledge and Prospects

    Get PDF
    We report on our knowledge of Galactic foregrounds, as well as on how a CMB satellite mission aiming at detecting a primordial B-mode signal (CMBPol) will contribute to improving it. We review the observational and analysis techniques used to constrain the structure of the Galactic magnetic field, whose presence is responsible for the polarization of Galactic emissions. Although our current understanding of the magnetized interstellar medium is somewhat limited, dramatic improvements in our knowledge of its properties are expected by the time CMBPol flies. Thanks to high resolution and high sensitivity instruments observing the whole sky at frequencies between 30 GHz and 850 GHz, CMBPol will not only improve this picture by observing the synchrotron emission from our galaxy, but also help constrain dust models. Polarized emission from interstellar dust indeed dominates over any other signal in CMBPol's highest frequency channels. Observations at these wavelengths, combined with ground-based studies of starlight polarization, will therefore enable us to improve our understanding of dust properties and of the mechanism(s) responsible for the alignment of dust grains with the Galactic magnetic field. CMBPol will also shed new light on observations that are presently not well understood. Morphological studies of anomalous dust and synchrotron emissions will indeed constrain their natures and properties, while searching for fluctuations in the emission from heliospheric dust will test our understanding of the circumheliospheric interstellar medium. Finally, acquiring more information on the properties of extra-Galactic sources will be necessary in order to maximize the cosmological constraints extracted from CMBPol's observations of CMB lensing. (abridged)Comment: 43 pages, 7 figures, 2 table
    corecore