25,472 research outputs found

    Perfect single error-correcting codes in the Johnson Scheme

    Full text link
    Delsarte conjectured in 1973 that there are no nontrivial pefect codes in the Johnson scheme. Etzion and Schwartz recently showed that perfect codes must be k-regular for large k, and used this to show that there are no perfect codes correcting single errors in J(n,w) for n <= 50000. In this paper we show that there are no perfect single error-correcting codes for n <= 2^250.Comment: 4 pages, revised, accepted for publication in IEEE Transactions on Information Theor

    Proposed observations of gravity waves from the early Universe via "Millikan oil drops"

    Get PDF
    Pairs of Planck-mass drops of superfluid helium coated by electrons (i.e., ``Millikan oil drops''), when levitated in a superconducting magnetic trap, can be efficient quantum transducers between electromagnetic (EM) and gravitational (GR) radiation. This leads to the possibility of a Hertz-like experiment, in which EM waves are converted at the source into GR waves, and then back-converted at the receiver from GR waves back into EM waves. Detection of the gravity-wave analog of the cosmic microwave background using these drops can discriminate between various theories of the early Universe.Comment: 10 pages, 2 figures, NASA "Quantum-to-Cosmos" conference proceedings to be published in IJMP

    Algebraic Methods in the Congested Clique

    Full text link
    In this work, we use algebraic methods for studying distance computation and subgraph detection tasks in the congested clique model. Specifically, we adapt parallel matrix multiplication implementations to the congested clique, obtaining an O(n1−2/ω)O(n^{1-2/\omega}) round matrix multiplication algorithm, where ω<2.3728639\omega < 2.3728639 is the exponent of matrix multiplication. In conjunction with known techniques from centralised algorithmics, this gives significant improvements over previous best upper bounds in the congested clique model. The highlight results include: -- triangle and 4-cycle counting in O(n0.158)O(n^{0.158}) rounds, improving upon the O(n1/3)O(n^{1/3}) triangle detection algorithm of Dolev et al. [DISC 2012], -- a (1+o(1))(1 + o(1))-approximation of all-pairs shortest paths in O(n0.158)O(n^{0.158}) rounds, improving upon the O~(n1/2)\tilde{O} (n^{1/2})-round (2+o(1))(2 + o(1))-approximation algorithm of Nanongkai [STOC 2014], and -- computing the girth in O(n0.158)O(n^{0.158}) rounds, which is the first non-trivial solution in this model. In addition, we present a novel constant-round combinatorial algorithm for detecting 4-cycles.Comment: This is work is a merger of arxiv:1412.2109 and arxiv:1412.266

    A one line factoring algorithm

    Get PDF
    We describe a variant of Fermat’s factoring algorithm which is competitive with SQUFOF in practice but has heuristic run time complexity O(n1/3) as a general factoring algorithm. We also describe a sparse class of integers for which the algorithm is particularly effective. We provide speed comparisons between an optimised implementation of the algorithm described and the tuned assortment of factoring algorithms in the Pari/GP computer algebra package

    Heralded quantum entanglement between two crystals

    Full text link
    Quantum networks require the crucial ability to entangle quantum nodes. A prominent example is the quantum repeater which allows overcoming the distance barrier of direct transmission of single photons, provided remote quantum memories can be entangled in a heralded fashion. Here we report the observation of heralded entanglement between two ensembles of rare-earth-ions doped into separate crystals. A heralded single photon is sent through a 50/50 beamsplitter, creating a single-photon entangled state delocalized between two spatial modes. The quantum state of each mode is subsequently mapped onto a crystal, leading to an entangled state consisting of a single collective excitation delocalized between two crystals. This entanglement is revealed by mapping it back to optical modes and by estimating the concurrence of the retrieved light state. Our results highlight the potential of rare-earth-ions doped crystals for entangled quantum nodes and bring quantum networks based on solid-state resources one step closer.Comment: 10 pages, 5 figure
    • …
    corecore