11,025 research outputs found

    Improved Malware detection model with Apriori Association rule and particle swarm optimization

    Get PDF
    The incessant destruction and harmful tendency of malware on mobile devices has made malware detection an indispensable continuous field of research. Different matching/mismatching approaches have been adopted in the detection of malware which includes anomaly detection technique, misuse detection, or hybrid detection technique. In order to improve the detection rate of malicious application on the Android platform, a novel knowledge-based database discovery model that improves apriori association rule mining of a priori algorithm with Particle Swarm Optimization (PSO) is proposed. Particle swarm optimization (PSO) is used to optimize the random generation of candidate detectors and parameters associated with apriori algorithm (AA) for features selection. In this method, the candidate detectors generated by particle swarm optimization form rules using apriori association rule. These rule models are used together with extraction algorithm to classify and detect malicious android application. Using a number of rule detectors, the true positive rate of detecting malicious code is maximized, while the false positive rate of wrongful detection is minimized. The results of the experiments show that the proposed a priori association rule with Particle Swarm Optimization model has remarkable improvement over the existing contemporary detection models. © 2019 Olawale Surajudeen Adebayo and Normaziah Abdul Aziz

    A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments

    Get PDF
    This article is posted here with permission from the IEEE - Copyright @ 2010 IEEEIn the real world, many optimization problems are dynamic. This requires an optimization algorithm to not only find the global optimal solution under a specific environment but also to track the trajectory of the changing optima over dynamic environments. To address this requirement, this paper investigates a clustering particle swarm optimizer (PSO) for dynamic optimization problems. This algorithm employs a hierarchical clustering method to locate and track multiple peaks. A fast local search method is also introduced to search optimal solutions in a promising subregion found by the clustering method. Experimental study is conducted based on the moving peaks benchmark to test the performance of the clustering PSO in comparison with several state-of-the-art algorithms from the literature. The experimental results show the efficiency of the clustering PSO for locating and tracking multiple optima in dynamic environments in comparison with other particle swarm optimization models based on the multiswarm method.This work was supported by the Engineering and Physical Sciences Research Council of U.K., under Grant EP/E060722/1

    Particle Swarm Optimization: An efficient method for tracing periodic orbits in 3D galactic potentials

    Full text link
    We propose the Particle Swarm Optimization (PSO) as an alternative method for locating periodic orbits in a three--dimensional (3D) model of barred galaxies. We develop an appropriate scheme that transforms the problem of finding periodic orbits into the problem of detecting global minimizers of a function, which is defined on the Poincar\'{e} Surface of Section (PSS) of the Hamiltonian system. By combining the PSO method with deflection techniques, we succeeded in tracing systematically several periodic orbits of the system. The method succeeded in tracing the initial conditions of periodic orbits in cases where Newton iterative techniques had difficulties. In particular, we found families of 2D and 3D periodic orbits associated with the inner 8:1 to 12:1 resonances, between the radial 4:1 and corotation resonances of our 3D Ferrers bar model. The main advantages of the proposed algorithm is its simplicity, its ability to work using function values solely, as well as its ability to locate many periodic orbits per run at a given Jacobian constant.Comment: 12 pages, 8 figures, accepted for publication in MNRA

    A general framework of multi-population methods with clustering in undetectable dynamic environments

    Get PDF
    Copyright @ 2011 IEEETo solve dynamic optimization problems, multiple population methods are used to enhance the population diversity for an algorithm with the aim of maintaining multiple populations in different sub-areas in the fitness landscape. Many experimental studies have shown that locating and tracking multiple relatively good optima rather than a single global optimum is an effective idea in dynamic environments. However, several challenges need to be addressed when multi-population methods are applied, e.g., how to create multiple populations, how to maintain them in different sub-areas, and how to deal with the situation where changes can not be detected or predicted. To address these issues, this paper investigates a hierarchical clustering method to locate and track multiple optima for dynamic optimization problems. To deal with undetectable dynamic environments, this paper applies the random immigrants method without change detection based on a mechanism that can automatically reduce redundant individuals in the search space throughout the run. These methods are implemented into several research areas, including particle swarm optimization, genetic algorithm, and differential evolution. An experimental study is conducted based on the moving peaks benchmark to test the performance with several other algorithms from the literature. The experimental results show the efficiency of the clustering method for locating and tracking multiple optima in comparison with other algorithms based on multi-population methods on the moving peaks benchmark

    Fast multi-swarm optimization for dynamic optimization problems

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2008 IEEEIn the real world, many applications are non-stationary optimization problems. This requires that the optimization algorithms need to not only find the global optimal solution but also track the trajectory of the changing global best solution in a dynamic environment. To achieve this, this paper proposes a multi-swarm algorithm based on fast particle swarm optimization for dynamic optimization problems. The algorithm employs a mechanism to track multiple peaks by preventing overcrowding at a peak and a fast particle swarm optimization algorithm as a local search method to find the near optimal solutions in a local promising region in the search space. The moving peaks benchmark function is used to test the performance of the proposed algorithm. The numerical experimental results show the efficiency of the proposed algorithm for dynamic optimization problems

    Human Head Tracking Based on Particle Swarm Optimization and Genetic Algorithm

    Get PDF
    This paper compares particle swarm optimization and a genetic algorithm for perception by a partner robot. The robot requires visual perception to interact with human beings. It should basically extract moving objects using visual perception in interaction with human beings. To reduce computational cost and time consumption, we used differential extraction. We propose human head tracking for a partner robot using particle swarm optimization and a genetic algorithm. Experiments involving two maximum iteration numbers show that particle swarm optimization is more effective in solving this problem than genetic algorithm
    corecore