90 research outputs found

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 383)

    Get PDF
    This bibliography lists 100 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System during Nov. 1992. Subject coverage includes the following topics: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    RXFOOD: Plug-in RGB-X Fusion for Object of Interest Detection

    Full text link
    The emergence of different sensors (Near-Infrared, Depth, etc.) is a remedy for the limited application scenarios of traditional RGB camera. The RGB-X tasks, which rely on RGB input and another type of data input to resolve specific problems, have become a popular research topic in multimedia. A crucial part in two-branch RGB-X deep neural networks is how to fuse information across modalities. Given the tremendous information inside RGB-X networks, previous works typically apply naive fusion (e.g., average or max fusion) or only focus on the feature fusion at the same scale(s). While in this paper, we propose a novel method called RXFOOD for the fusion of features across different scales within the same modality branch and from different modality branches simultaneously in a unified attention mechanism. An Energy Exchange Module is designed for the interaction of each feature map's energy matrix, who reflects the inter-relationship of different positions and different channels inside a feature map. The RXFOOD method can be easily incorporated to any dual-branch encoder-decoder network as a plug-in module, and help the original backbone network better focus on important positions and channels for object of interest detection. Experimental results on RGB-NIR salient object detection, RGB-D salient object detection, and RGBFrequency image manipulation detection demonstrate the clear effectiveness of the proposed RXFOOD.Comment: 10 page

    Aerospace medicine and biology: A cumulative index to a continuing bibliography (supplement 358)

    Get PDF
    This publication is a cumulative index to the abstracts contained in Supplements 346 through 357 of Aerospace Medicine and Biology: A Continuing Bibliography. It includes seven indexes: subject, personal author, corporate source, foreign technology, contract number, report number and accession number

    Mars, invisible vision and the virtual landscape: immersive encounters with contemporary rover images

    Get PDF
    How do contemporary imaging devices and the forms in which images are displayed affect our perception of Mars? How are scientists and engineers visually exploring, experiencing and navigating this uninhabitable terrain? Can we better understand this virtual landscape through immersive imaging techniques, or are these simply illusions? At what point does the glitch invade these immersive spaces, throwing us back into the realm of the image? And finally, can the glitch be seen as a method towards another kind of visibility, enabling us to ‘see’ and encounter Mars in productive ways? Through the analysis of contemporary representations of the Martian terrain, Mars, Invisible Vision and the Virtual Landscape: Immersive Encounters with Contemporary Rover Images offers a new contribution to studies of the digital and virtual image. Specifically addressing immersive image forms used in Mars exploration the research is structured around four main case studies: life-size illusions such as panoramas; 3D imaging; false colour imaging; and the concept of a ‘Mars Yard’. The thesis offers a new understanding of human interaction with a landscape only visible through a screen, and how contemporary scientific imaging devices aim to collapse the frame and increase a sense of immersion in the image. Arguing that these representations produce inherently virtual experiences, their transportive power is questioned, highlighting the image as reconstructed – through the presence of a glitch, illusion is broken, revealing the image-as-image. This thesis takes an interdisciplinary approach in which scientific images are analysed through the prism of photography’s relationship to reality, theories of vision and perception, representations of landscape, and digital and virtual image theory. At the heart of this thesis is the act of looking; critical and speculative writing is used to convey immersive encounters with images at NASA and the Jet Propulsion Laboratory (USA); University College London’s Regional Planetary Imaging Facility; Airbus Defence and Space (UK); the photographic archive at the V&A; and the Panorama Mesdag (Netherlands). The research re-examines scientific forms of images against examples from the history of visual culture (be it art or popular culture) to draw parallels between different ways of seeing, representing and discovering the unknown. The eyes of the Mars rovers provide viewpoints through which we regard an alien terrain: windows upon unknown worlds. Rover images bridge a gap between what is known and unknown, between what is visible and invisible. The rover is our surrogate, an extension of our vision that portrays an intuitively comprehensible landscape. Yet this landscape remains totally out of reach, millions of miles away. This distance is an impenetrable boundary – both physically and metaphorically – that new technologies are trying to break. Mars, Invisible Vision and the Virtual Landscape offers a two-way impact, constituting a new approach to the relationship between real and imagined images in order to demonstrate that the real Mars, however it is represented and perceived, remains distant and detached

    Visual Impairment and Blindness

    Get PDF
    Blindness and vision impairment affect at least 2.2 billion people worldwide with most individuals having a preventable vision impairment. The majority of people with vision impairment are older than 50 years, however, vision loss can affect people of all ages. Reduced eyesight can have major and long-lasting effects on all aspects of life, including daily personal activities, interacting with the community, school and work opportunities, and the ability to access public services. This book provides an overview of the effects of blindness and visual impairment in the context of the most common causes of blindness in older adults as well as children, including retinal disorders, cataracts, glaucoma, and macular or corneal degeneration

    Clinical outcomes of ranibizumab treatment in diabetic eye disease

    Get PDF
    Background: The vascular endothelial growth factor (VEGF) inhibitor ranibizumab is emerging as an efficacious treatment for diabetic macular oedema. Large clinical trials have shown improvements in visual acuity and reduced central retinal thickness. Details of its effect on other retinal functional parameters are lacking. There is a concern that repeated ranibizumab treatment could exacerbate macular ischaemia or lead to global retinal dysfunction by inhibiting physiological isoforms of VEGF. Outcomes of surgery for advanced proliferative retinopathy remain variable and post-operative complications including recurrent haemorrhage can limit visual recovery. VEGF is strongly implicated in the pathogenesis of advanced retinopathy, so VEGF inhibition prior to surgery may improve outcomes. Trials have failed to demonstrate a clear benefit for bevacizumab, so investigation of the licensed intraocular agent ranibizumab represents a logical next step. Aims: To investigate the effects of ranibizumab and laser treatment in diabetic macular oedema on the following parameters: visual acuity, protan and tritan colour contrast sensitivity, 4° and 12° macular sensitivity by microperimetry, electrophysiological indices from pattern and full field electroretinograms. To report structural retinal changes following ranibizumab and laser treatment in terms of qualitative and quantitative optical coherence tomography outcomes, and to quantify macular ischaemia by fluorescein angiography. To investigate the effect on visual acuity at three months post-surgery of ranibizumab pre-treatment in patients undergoing vitrectomy for advanced proliferative diabetic retinopathy. Methods: Randomised clinical trial of intravitreal ranibizumab vs. laser in 36 subjects with centre-involving diabetic macular oedema (The LUCIDATE study). Randomised clinical trial of pre-operative intravitreal ranibizumab vs. subconjunctival saline injection in 30 subjects undergoing vitrectomy-delamination for advanced proliferative diabetic retinopathy (The RaDiVit study). Results: Thirty six subjects with diabetic macular oedema were recruited and 33 completed the trial. Ranibizumab treated subjects gained a mean of 6 letters compared with 0.9 letter loss for laser at 48 weeks. Retinal sensitivity improved in the central macular 4° and 12° in both groups but to a greater extent with ranibizumab. There was no evidence of worsening global retinal dysfunction by electroretinograms in either group. Retinal thickness decreased in both groups: there was a 132 µm reduction in central macular thickness with ranibizumab compared with 103 µm for laser. Fluorescein angiography showed no evidence of significantly increased macular ischaemia in either group. Thirty subjects with advanced proliferative diabetic retinopathy were recruited, underwent surgery, and completed the study. At three months post-surgery, visual acuity in the ranibizumab group was 53 letters compared with 47 letters in the control group. Conclusion: In diabetic macular oedema, there is evidence that ranibizumab leads to greater improvements in visual acuity and retinal sensitivity than laser, with a corresponding greater reduction in retinal thickness. There is no evidence that it worsens macular ischaemia or indices of global retinal electrophysiological function, but larger trials designed to address each of the outcomes investigated here would be required to confirm these findings. In proliferative diabetic retinopathy, there is evidence from this small pilot study that ranibizumab treatment leads to better visual acuity at 3 months post-surgery. An appropriately powered trial would be required to confirm this

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    Multiple Particle Positron Emission Particle Tracking and its Application to Flows in Porous Media

    Get PDF
    Positron emission particle tracking (PEPT) is a method for flow interrogation capable of measurement in opaque systems. In this work a novel method for PEPT is introduced that allows for simultaneous tracking of multiple tracers. This method (M-PEPT) is adapted from optical particle tracking techniques and is designed to track an arbitrary number of positron-emitting tracer-particles entering and leaving the field of view of a detector array. M-PEPT is described, and its applicability is demonstrated for a number of measurements ranging from turbulent shear flow interrogation to cell migration. It is found that this method can locate over 80 particles simultaneously with spatial resolution of order 0.2 mm at tracking frequency of 10 Hz and, at lower particle number densities, can achieve similar spatial resolution at tracking frequency 1000 Hz. The method is limited in its ability to resolve particles approaching close to one another, and suggestions for future improvements are made.M-PEPT is used to study flow in porous media constructed from packing of glass beads of different diameters. Anomalous (i.e. non-Fickian) dispersion of tracers is studied in these systems under the continuous time random walk (CTRW) paradigm. Pore-length transition time distributions are measured, and it is found that in all cases, these distributions indicate the presence of long waiting times between transitions, confirming the central assumption of the CTRW model. All systems demonstrate non-Fickian spreading of tracers at early and intermediate times with a late time recovery of Fickian dispersion, but a clear link between transition time distributions and tracer spreading is not made. Velocity increment statistics are examined, and it is found that temporal velocity increments in the mean-flow direction show a universal scaling. Spatial velocity increments also appear to collapse to a similar form, but there is insufficient data to determine the presence of universal scaling
    • …
    corecore