192 research outputs found

    Factors of Influence on the Performance of a Short-Latency Non-Invasive Brain Switch: Evidence in Healthy Individuals and Implication for Motor Function Rehabilitation.

    Get PDF
    Brain-computer interfacing (BCI) has recently been applied as a rehabilitation approach for patients with motor disorders, such as stroke. In these closed-loop applications, a brain switch detects the motor intention from brain signals, e.g., scalp EEG, and triggers a neuroprosthetic device, either to deliver sensory feedback or to mimic real movements, thus re-establishing the compromised sensory-motor control loop and promoting neural plasticity. In this context, single trial detection of motor intention with short latency is a prerequisite. The performance of the event detection from EEG recordings is mainly determined by three factors: the type of motor imagery (e.g., repetitive, ballistic), the frequency band (or signal modality) used for discrimination (e.g., alpha, beta, gamma, and MRCP, i.e., movement-related cortical potential), and the processing technique (e.g., time-series analysis, sub-band power estimation). In this study, we investigated single trial EEG traces during movement imagination on healthy individuals, and provided a comprehensive analysis of the performance of a short-latency brain switch when varying these three factors. The morphological investigation showed a cross-subject consistency of a prolonged negative phase in MRCP, and a delayed beta rebound in sensory-motor rhythms during repetitive tasks. The detection performance had the greatest accuracy when using ballistic MRCP with time-series analysis. In this case, the true positive rate (TPR) was ~70% for a detection latency of ~200 ms. The results presented here are of practical relevance for designing BCI systems for motor function rehabilitation

    Applications of Brain Computer Interface in Present Healthcare Setting

    Get PDF
    Brain-computer interface (BCI) is an innovative method of integrating technology for healthcare. Utilizing BCI technology allows for direct communication and/or control between the brain and an external device, thereby displacing conventional neuromuscular pathways. The primary goal of BCI in healthcare is to repair or reinstate useful function to people who have impairments caused by neuromuscular disorders (e.g., stroke, amyotrophic lateral sclerosis, spinal cord injury, or cerebral palsy). BCI brings with it technical and usability flaws in addition to its benefits. We present an overview of BCI in this chapter, followed by its applications in the medical sector in diagnosis, rehabilitation, and assistive technology. We also discuss BCI’s strengths and limitations, as well as its future direction

    Analysis of sensorimotor rhythms based on lower-limbs motor imagery for brain-computer interface

    Get PDF
    Over recent years significant advancements in the field of assistive technologies have been observed. One of the paramount needs for the development and advancement that urged researchers to contribute in the field other than congenital or diagnosed chronic disorders, is the rising number of affectees from accidents, natural calamity (due to climate change), or warfare, worldwide resulting in spinal cord injuries (SCI), neural disorder, or amputation (interception) of limbs, that impede a human to live a normal life. In addition to this, more than ten million people in the world are living with some form of handicap due to the central nervous system (CNS) disorder, which is precarious. Biomedical devices for rehabilitation are the center of research focus for many years. For people with lost motor control, or amputation, but unscathed sensory control, instigation of control signals from the source, i.e. electrophysiological signals, is vital for seamless control of assistive biomedical devices. Control signals, i.e. motion intentions, arouse    in the sensorimotor cortex of the brain that can be detected using invasive or non-invasive modality. With non-invasive modality, the electroencephalography (EEG) is used to record these motion intentions encoded in electrical activity of the cortex, and are deciphered to recognize user intent for locomotion. They are further transferred to the actuator, or end effector of the assistive device for control purposes. This can be executed via the brain-computer interface (BCI) technology. BCI is an emerging research field that establishes a real-time bidirectional connection between the human brain and a computer/output device. Amongst its diverse applications, neurorehabilitation to deliver sensory feedback and brain controlled biomedical devices for rehabilitation are most popular. While substantial literature on control of upper-limb assistive technologies controlled via BCI is there, less is known about the lower-limb (LL) control of biomedical devices for navigation or gait assistance via BCI. The types  of EEG signals compatible with an independent BCI are the oscillatory/sensorimotor rhythms (SMR) and event-related potential (ERP). These signals have successfully been used in BCIs for navigation control of assistive devices. However, ERP paradigm accounts for a voluminous setup for stimulus presentation to the user during operation of BCI assistive device. Contrary to this, the SMR does not require large setup for activation of cortical activity; it instead depends on the motor imagery (MI) that is produced synchronously or asynchronously by the user. MI is a covert cognitive process also termed kinaesthetic motor imagery (KMI) and elicits clearly after rigorous training trials, in form of event-related desynchronization (ERD) or synchronization (ERS), depending on imagery activity or resting period. It usually comprises of limb movement tasks, but is not limited to it in a BCI paradigm. In order to produce detectable features that correlate to the user¿s intent, selection of cognitive task is an important aspect to improve the performance of a BCI. MI used in BCI predominantly remains associated with the upper- limbs, particularly hands, due to the somatotopic organization of the motor cortex. The hand representation area is substantially large, in contrast to the anatomical location of the LL representation areas in the human sensorimotor cortex. The LL area is located within the interhemispheric fissure, i.e. between the mesial walls of both hemispheres of the cortex. This makes it arduous to detect EEG features prompted upon imagination of LL. Detailed investigation of the ERD/ERS in the mu and beta oscillatory rhythms during left and right LL KMI tasks is required, as the user¿s intent to walk is of paramount importance associated to everyday activity. This is an important area of research, followed by the improvisation of the already existing rehabilitation system that serves the LL affectees. Though challenging, solution to these issues is also imperative for the development of robust controllers that follow the asynchronous BCI paradigms to operate LL assistive devices seamlessly. This thesis focusses on the investigation of cortical lateralization of ERD/ERS in the SMR, based on foot dorsiflexion KMI and knee extension KMI separately. This research infers the possibility to deploy these features in real-time BCI by finding maximum possible classification accuracy from the machine learning (ML) models. EEG signal is non-stationary, as it is characterized by individual-to-individual and trial-to-trial variability, and a low signal-to-noise ratio (SNR), which is challenging. They are high in dimension with relatively low number of samples available for fitting ML models to the data. These factors account for ML methods that were developed into the tool of choice  to analyse single-trial EEG data. Hence, the selection of appropriate ML model for true detection of class label with no tradeoff of overfitting is crucial. The feature extraction part of the thesis constituted of testing the band-power (BP) and the common spatial pattern (CSP) methods individually. The study focused on the synchronous BCI paradigm. This was to ensure the exhibition of SMR for the possibility of a practically viable control system in a BCI. For the left vs. right foot KMI, the objective was to distinguish the bilateral tasks, in order to use them as unilateral commands in a 2-class BCI for controlling/navigating a robotic/prosthetic LL for rehabilitation. Similar was the approach for left-right knee KMI. The research was based on four main experimental studies. In addition to the four studies, the research is also inclusive of the comparison of intra-cognitive tasks within the same limb, i.e. left foot vs. left knee and right foot vs. right knee tasks, respectively (Chapter 4). This added to another novel contribution towards the findings based on comparison of different tasks within the same LL. It provides basis to increase the dimensionality of control signals within one BCI paradigm, such as a BCI-controlled LL assistive device with multiple degrees of freedom (DOF) for restoration of locomotion function. This study was based on analysis of statistically significant mu ERD feature using BP feature extraction method. The first stage of this research comprised of the left vs. right foot KMI tasks, wherein the ERD/ERS that elicited in the mu-beta rhythms were analysed using BP feature extraction method (Chapter 5). Three individual features, i.e. mu ERD, beta ERD, and beta ERS were investigated on EEG topography and time-frequency (TF) maps, and average time course of power percentage, using the common average reference and bipolar reference methods. A comparative study was drawn for both references to infer the optimal method. This was followed by ML, i.e. classification of the three feature vectors (mu ERD, beta ERD, and beta ERS), using linear discriminant analysis (LDA), support vector machine (SVM), and k-nearest neighbour (KNN) algorithms, separately. Finally, the multiple correction statistical tests were done, in order to predict maximum possible classification accuracy amongst all paradigms for the most significant feature. All classifier models were supported with the statistical techniques of k-fold cross validation and evaluation of area under receiver-operator characteristic curves (AUC-ROC) for prediction of the true class label. The highest classification accuracy of 83.4% ± 6.72 was obtained with KNN model for beta ERS feature. The next study was based on enhancing the classification accuracy obtained from previous study. It was based on using similar cognitive tasks as study in Chapter 5, however deploying different methodology for feature extraction and classification procedure. In the second study, ERD/ERS from mu and beta rhythms were extracted using CSP and filter bank common spatial pattern (FBCSP) algorithms, to optimize the individual spatial patterns (Chapter 6). This was followed by ML process, for which the supervised logistic regression (Logreg) and LDA were deployed separately. Maximum classification accuracy resulted in 77.5% ± 4.23 with FBCSP feature vector and LDA model, with a maximum kappa coefficient of 0.55 that is in the moderate range of agreement between the two classes. The left vs. right foot discrimination results were nearly same, however the BP feature vector performed better than CSP. The third stage was based on the deployment of novel cognitive task of left vs. right knee extension KMI. Analysis of the ERD/ERS in the mu-beta rhythms was done for verification of cortical lateralization via BP feature vector (Chapter 7). Similar to Chapter 5, in this study the analysis of ERD/ERS features was done on the EEG topography and TF maps, followed by the determination of average time course and peak latency of feature occurrence. However, for this study, only mu ERD and beta ERS features were taken into consideration and the EEG recording method only comprised of common average reference. This was due to the established results from the foot study earlier, in Chapter 5, where beta ERD features showed less average amplitude. The LDA and KNN classification algorithms were employed. Unexpectedly, the left vs. right knee KMI reflected the highest accuracy of 81.04% ± 7.5 and an AUC-ROC = 0.84, strong enough to be used in a real-time BCI as two independent control features. This was using KNN model for beta ERS feature. The final study of this research followed the same paradigm as used in Chapter 6, but for left vs. right knee KMI cognitive task (Chapter 8). Primarily this study aimed at enhancing the resulting accuracy from Chapter 7, using CSP and FBCSP methods with Logreg and LDA models respectively. Results were in accordance with those of the already established foot KMI study, i.e. BP feature vector performed better than the CSP. Highest classification accuracy of 70.00% ± 2.85 with kappa score of 0.40 was obtained with Logreg using FBCSP feature vector. Results stipulated the utilization of ERD/ERS in mu and beta bands, as independent control features for discrimination of bilateral foot or the novel bilateral knee KMI tasks. Resulting classification accuracies implicate that any 2-class BCI, employing unilateral foot, or knee KMI, is suitable for real-time implementation. In conclusion, this thesis demonstrates the possible EEG pre-processing, feature extraction and classification methods to instigate a real-time BCI from the conducted studies. Following this, the critical aspects of latency in information transfer rate, SNR, and tradeoff between dimensionality and overfitting needs to be taken care of, during design of real-time BCI controller. It also highlights that there is a need for consensus over the development of standardized methods of cognitive tasks for MI based BCI. Finally, the application of wireless EEG for portable assistance is essential as it will contribute to lay the foundations of the development of independent asynchronous BCI based on SMR

    Enhancement of Robot-Assisted Rehabilitation Outcomes of Post-Stroke Patients Using Movement-Related Cortical Potential

    Get PDF
    Post-stroke rehabilitation is essential for stroke survivors to help them regain independence and to improve their quality of life. Among various rehabilitation strategies, robot-assisted rehabilitation is an efficient method that is utilized more and more in clinical practice for motor recovery of post-stroke patients. However, excessive assistance from robotic devices during rehabilitation sessions can make patients perform motor training passively with minimal outcome. Towards the development of an efficient rehabilitation strategy, it is necessary to ensure the active participation of subjects during training sessions. This thesis uses the Electroencephalography (EEG) signal to extract the Movement-Related Cortical Potential (MRCP) pattern to be used as an indicator of the active engagement of stroke patients during rehabilitation training sessions. The MRCP pattern is also utilized in designing an adaptive rehabilitation training strategy that maximizes patients’ engagement. This project focuses on the hand motor recovery of post-stroke patients using the AMADEO rehabilitation device (Tyromotion GmbH, Austria). AMADEO is specifically developed for patients with fingers and hand motor deficits. The variations in brain activity are analyzed by extracting the MRCP pattern from the acquired EEG data during training sessions. Whereas, physical improvement in hand motor abilities is determined by two methods. One is clinical tests namely Fugl-Meyer Assessment (FMA) and Motor Assessment Scale (MAS) which include FMA-wrist, FMA-hand, MAS-hand movements, and MAS-advanced hand movements’ tests. The other method is the measurement of hand-kinematic parameters using the AMADEO assessment tool which contains hand strength measurements during flexion (force-flexion), and extension (force-extension), and Hand Range of Movement (HROM)

    CLOSED-LOOP AFFERENT NERVE ELECTRICAL STIMULATION FOR REHABILITATION OF HAND FUNCTION IN SUBJECTS WITH INCOMPLETE SPINAL CORD INJURY

    Get PDF
    Peripheral nerve stimulation (PNS) is commonly used to promote use-dependent cortical plasticity for rehabilitation of motor function in spinal cord injury. Pairing transcranial magnetic stimulation (TMS) with PNS has been shown to increase motor evoked potentials most when the two stimuli are timed to arrive in the cortex simultaneously. This suggests that a mechanism of timing-dependent plasticity (TDP) may be a more effective method of promoting motor rehabilitation. The following thesis is the result of applying a brain-computer interface to apply PNS in closed-loop simultaneously to movement intention onset as measured by EEG of the sensorimotor cortex to test whether TDP can be induced in incomplete spinal cord injured individuals with upper limb motor impairment. 4 motor incomplete SCI subjects have completed 12 sessions of closed-loop PNS delivered over 4-6 weeks. Benefit was observed for every subject although not consistently across metrics. 3 out of 4 subjects exhibited increased maximum voluntary contraction force (MVCF) between first and last interventions for one or both hands. TMS-measured motor map volume increased for both hemispheres in one subject, and TMS center of gravity shifted in 3 subjects consistent with studies in which motor function improved or was restored. These observations suggest that rehabilitation using similar designs for responsive stimulation could improve motor impairment in SCI

    Development of a Non-Invasive Brain-Computer Interface for Neurorehabilitation

    Get PDF
    Neurological disorders, in particular Stroke, have an impact on many individuals worldwide. These individuals are often left with residual motor control in their upper limbs. Although conventional therapy can aid in recovery, it is not always accessible, and the procedures are dull for the patient. Novel methods of therapy are being developed, including Brain-Computer Interfaces (BCIs). Although BCI research has been flourishing in the past few years, most rehabilitation applications are not yet suitable for clinical practice.This is due to the fact that BCI reliability and validation has not yet been achieved, and few clinical trials have been done with BCIs. Another crucial factor, is that modern BCIs are often comprised of inconvenient hardware and software. This is a major factor of aversion from both patients and clinicians. This Master Dissertation introduces the EmotivBCI: an easy to use platform for Electroencephalogram acquisition, processing and classification of sensorimotor rhythms with respect to motor action and motor imagery. The acquisition of EEG is done through 8 channels of the Emotiv Epoc wireless headset. Signals are pre-processed, and the 2 best combinations of channel/frequency pairs that exhibit the greatest spectral variation between the rest and action conditions are extracted for different time frames. These features are then used to build a feature matrix with 2 sets of attributes and 2 class labels. Finally the resulting feature matrix is used to train 3 different classifiers, in which the best is selected. The EmotivBCI enables users to keep record of their performances, and provides additional features to further examine training sessions. To assess the performance of the EmotivBCI, two studies were conducted with healthy individuals. The first study compares classification accuracies between two different training paradigms. The second study evaluates the progress in performance of a group of individuals after several training sessions

    A brain-computer interface integrated with virtual reality and robotic exoskeletons for enhanced visual and kinaesthetic stimuli

    Get PDF
    Brain-computer interfaces (BCI) allow the direct control of robotic devices for neurorehabilitation and measure brain activity patterns following the user’s intent. In the past two decades, the use of non-invasive techniques such as electroencephalography and motor imagery in BCI has gained traction. However, many of the mechanisms that drive the proficiency of humans in eliciting discernible signals for BCI remains unestablished. The main objective of this thesis is to explore and assess what improvements can be made for an integrated BCI-robotic system for hand rehabilitation. Chapter 2 presents a systematic review of BCI-hand robot systems developed from 2010 to late 2019 in terms of their technical and clinical reports. Around 30 studies were identified as eligible for review and among these, 19 were still in their prototype or pre-clinical stages of development. A degree of inferiority was observed from these systems in providing the necessary visual and kinaesthetic stimuli during motor imagery BCI training. Chapter 3 discusses the theoretical background to arrive at a hypothesis that an enhanced visual and kinaesthetic stimulus, through a virtual reality (VR) game environment and a robotic hand exoskeleton, will improve motor imagery BCI performance in terms of online classification accuracy, class prediction probabilities, and electroencephalography signals. Chapters 4 and 5 focus on designing, developing, integrating, and testing a BCI-VR-robot prototype to address the research aims. Chapter 6 tests the hypothesis by performing a motor imagery BCI paradigm self-experiment with an enhanced visual and kinaesthetic stimulus against a control. A significant increase (p = 0.0422) in classification accuracies is reported among groups with enhanced visual stimulus through VR versus those without. Six out of eight sessions among the VR groups have a median of class probability values exceeding a pre-set threshold value of 0.6. Finally, the thesis concludes in Chapter 7 with a general discussion on how these findings could suggest the role of new and emerging technologies such as VR and robotics in advancing BCI-robotic systems and how the contributions of this work may help improve the usability and accessibility of such systems, not only in rehabilitation but also in skills learning and education

    Development of EEG-based technologies for the characterization and treatment of neurological diseases affecting the motor function

    Get PDF
    This thesis presents a set of studies applying signal processing and data mining techniques in real-time working systems to register, characterize and condition the movement-related cortical activity of healthy subjects and of patients with neurological disorders affecting the motor function. Patients with two of the most widespread neurological affections impairing the motor function are considered here: patients with essential tremor and patients who have suffered a cerebro-vascular accident. The different chapters in the presented thesis show results regarding the normal cortical activity associated with the planning and execution of motor actions with the upper-limb, and the pathological activity related to the patients' motor dysfunction (measurable with muscle electrodes or movement sensors). The initial chapters of the book present i) a revision of the basic concepts regarding the role of the cerebral cortex in the motor control and the way in which the electroencephalographic activity allows its analysis and conditioning, ii) a study on the cortico-muscular interaction at the tremor frequency in patients with essential tremor under the effects of a drug reducing their tremor, and finally iii) a study based on evolutionary algorithms that aims to identify cortical patterns related to the planning of a number of motor tasks performed with a single arm. In the second half of the thesis book, two brain-computer interface systems to be used in rehabilitation scenarios with essential tremor patients and with patients with a stroke are proposed. In the first system, the electroencephalographic activity is used to anticipate voluntary movement actions, and this information is integrated in a multimodal platform estimating and suppressing the pathological tremors. In the second case, a conditioning paradigm for stroke patients based on the identification of the motor intention with temporal precision is presented and tested with a cohort of four patients along a month during which the patients undergo eight intervention sessions. The presented thesis has yielded advances from both the technological and the scientific points of view in all studies proposed. The main contributions from the technological point of view are: ¿ The design of an integrated upper-limb platform working in real-time. The platform was designed to acquire information from different types of noninvasive sensors (EEG, EMG and gyroscopic sensors) characterizing the planning and execution of voluntary movements. The platform was also capable of processing online the acquired data and generating an electrical feedback. ¿ The development of signal processing and classifying techniques adapted to the kind of signal recorded in the two kinds of patients considered in this thesis (patients with essential tremor and patients with a stroke) and to the requirements of online processing and real-time single-trial function desired for BCI applications. Especially in this regard, an original methodology to detect onsets of voluntary movements using slow cortical potentials and cortical rhythms has been presented. ¿ The design and validation in real-time of asynchronous BCI systems using motor planning EEG segments to anticipate or detect when patients begin a voluntary movement with the upper-limb. ¿ The proof of concept of the advantages of an EEG system integrated in a multimodal human-robot interface architecture that constitutes the first multimodal interface using the combined acquisition of EEG, EMG and gyroscopic data, which allows the concurrent characterization of different parts of the body associated with the execution of a movement. The main scientific contributions of this thesis are: ¿ The study of the EEG-based anticipation of voluntary movements presented in Chapter 5 of the thesis was the first demonstration (to the author's knowledge) of the capacity of the EEG signal to provide reliable movement predictions based on single-trial classification of online data of healthy subjects and ET patients. This study also provides, for the first time, the results of a BCI system tested in ET patients and it represents an original approach to BCI applications for this group of patients. ¿ It has been presented the first neurophysiological study using EEG and EMG data to analyze the effects of a drug on cortical activity and tremors of patients with ET. In addition, the obtained results have shown for the first time that a significant correlation exists between the dynamics of specific cortical oscillations and pathological tremor manifestation as a consequence of the drug effects. ¿ It has been proposed for the first time an experiment to inspect whether the EEG signal carries enough information to classify up to seven different tasks performed with a single limb. Both the methodology applied and the validation procedure are also innovative in this sort of studies. ¿ It has been demonstrated for the first time the relevance of combining different cortical sources of information (such as BP and ERD) to estimate the initiation of voluntary movements with the upper-limb. In this line, special relevance may be given to the positive results achieved with stroke patients, improving the results presented by similar previous EEG-based studies by other research groups. It has also been proposed for the first time an upper-limb intervention protocol for stroke patients using BP and ERD patterns to provide proprioceptive feedback tightly associated with the patients' expectations of movement. The effects of the proposed intervention have been studied with a small group of patients

    Development of an EEG-based recurrent neural network for online gait decoding

    Get PDF
    Recent neuroscientific literature has shown that the use of brain-controlled robotic exoskeletons in walking rehabilitation induces neuroplasticity modi- fications, possibly leading to a higher likelihood of recovery and maintenance of lost motor functions due to a neural lesion, with respect to traditional re- habilitation. However, the gait decoding from brain signals remains an open challenge. The aim of this work is to implement and validate a deep learning model for online gait decoding that exploits Electroencephalography (EEG) infor- mation to predict the intention of initiating a step, which could be used to trigger the assistance of a lower-limb exoskeleton. In particular, the model exploits a Gated Recurrent Units (GRU) deep neural network to handle the time-dependent features which were identified by analysing the neural cor- relates preceding the step onset (i.e., Movement-Related Cortical Potentials (MRCP)). The network was evaluated on a pre-recorded dataset of 11 healthy subjects walking on a treadmill. The network’s architecture (e.g., number of GRU units) was optimized through grid search. In addition, to deal with the data scarcity problem of neurophysiological applications, I proposed a data augmentation procedure to increase the dataset available to train the model of each subject. With the proposed approach, the model achieved an average accuracy in detecting the step onset of 89.7 ± 7.7% with just the 15% of the dataset for each subject (∼70 steps), and up to 97.8 ± 1.3% with the whole dataset (∼440 steps). This thesis support the use of a memory-based deep learning model to de- code walking activity from non-invasive brain recordings. In future works, this model will be exploited in real time as a more effective input for devices restoring locomotion in impaired people, such as robotic exoskeletons.Recent neuroscientific literature has shown that the use of brain-controlled robotic exoskeletons in walking rehabilitation induces neuroplasticity modi- fications, possibly leading to a higher likelihood of recovery and maintenance of lost motor functions due to a neural lesion, with respect to traditional re- habilitation. However, the gait decoding from brain signals remains an open challenge. The aim of this work is to implement and validate a deep learning model for online gait decoding that exploits Electroencephalography (EEG) infor- mation to predict the intention of initiating a step, which could be used to trigger the assistance of a lower-limb exoskeleton. In particular, the model exploits a Gated Recurrent Units (GRU) deep neural network to handle the time-dependent features which were identified by analysing the neural cor- relates preceding the step onset (i.e., Movement-Related Cortical Potentials (MRCP)). The network was evaluated on a pre-recorded dataset of 11 healthy subjects walking on a treadmill. The network’s architecture (e.g., number of GRU units) was optimized through grid search. In addition, to deal with the data scarcity problem of neurophysiological applications, I proposed a data augmentation procedure to increase the dataset available to train the model of each subject. With the proposed approach, the model achieved an average accuracy in detecting the step onset of 89.7 ± 7.7% with just the 15% of the dataset for each subject (∼70 steps), and up to 97.8 ± 1.3% with the whole dataset (∼440 steps). This thesis support the use of a memory-based deep learning model to de- code walking activity from non-invasive brain recordings. In future works, this model will be exploited in real time as a more effective input for devices restoring locomotion in impaired people, such as robotic exoskeletons
    • …
    corecore